Presidio County Underground Water Conservation District Alamito Creek Project Presidio County, Texas

### Report of Investigation

August 7, 2021

Raymond L Straub Jr., P.G. Straub Corporation Stanton, Texas



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

This page left blank



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

Geoscientist Seal

The content of this report documents the work of the following Licensed Professional Geoscientist:

Raymond L Straub Jr., P.G. No. 11070

Raymond L Straub Jr. prepared this original report excluding the data and information provided by second and third party sources listed in the reference and appendix.

Seal

The seal appearing on this document was authorized on August 7, 2021

mand I Strent f. P.b.



This document was prepared in part by the technical assistance of Straub Corporation staff, especially Jill Johnson, MS., Staff Hydrogeologist.

Straub Corporation, P.O. Box 192, Stanton, Texas 79782 is a Texas Registered Geoscience Firm # 50426.

Raymond L Straub Jr., P.G. No. 11070, TWWD-4456AI, NMWD-1478

Regulated By:

Texas Board of Professional Geoscientists P. O. Box 13225, Austin, TX 78711 (512) 936-4400

The Texas Department of Licensing and Regulation P.O. Box 12157 Austin, Texas 78711 (800) 803-9202 (512) 463-7880



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

#### Table of Contents

| Location                                            | .6  |
|-----------------------------------------------------|-----|
| Reference                                           | .6  |
| Scope                                               | .6  |
| Study Area                                          | .6  |
| Method of Study                                     | .6  |
| Preliminary Data Review                             | .6  |
| Site Specific Field Visit and Sample Collection     | .6  |
| Water Quality Analysis                              | .7  |
| Isotope Analysis                                    | .7  |
| Data Presentation                                   | . 8 |
| Site Map                                            | .9  |
| Sample Locations                                    | 10  |
| Study Area Geology                                  | 11  |
| Duff Formation                                      | 11  |
| Mitchell Mesa Rhyolite                              | 11  |
| Tascotal Formation                                  | 11  |
| Petan Basalt                                        | 11  |
| Oligocene Intrusive Igneous Rocks                   | 12  |
| Rawls Formation                                     | 12  |
| Quaternary Alluvium                                 | 12  |
| Geologic Structure                                  | 12  |
| Geologic Scale                                      | 13  |
| Narrative of Field Work                             | 14  |
| Water Wells                                         | 16  |
| Water level Measurement and Potentiometric Surfaces | 16  |
| Summary of Sampling Methodology                     | 16  |
| Sample Location configuration                       | 16  |
| Water-Level Measurement                             | 17  |
| Purging                                             | 17  |
| Sampling                                            | 17  |
| Equipment and Supplies                              | 17  |
| Decontamination                                     | 18  |
| Water Quality and Isotope Analysis                  | 18  |



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

| Groundwater Quality                                       |    |
|-----------------------------------------------------------|----|
| Isotopes                                                  |    |
| Water Quality Data Analysis Methods                       | 20 |
| Result of Analyses                                        | 21 |
| Isotopes                                                  | 21 |
| Water Quality                                             | 22 |
| Piper Plots                                               | 23 |
| Durov Plot                                                | 23 |
| Gibbs Plot                                                | 23 |
| Regression Plots                                          | 24 |
| Radial Plots                                              | 25 |
| Saturation Indices                                        |    |
| Conclusion                                                |    |
| Limitations                                               |    |
| References                                                |    |
| Isotope Plot Interpretation Chart                         |    |
| Stable Isotope Data                                       |    |
| Oxygen-18 / Deuterium Isotope Plot                        |    |
| Laboratory Results                                        |    |
| Piper Plot Interpretation Chart                           | 40 |
| Water Quality Piper Plot – All Sample Locations           | 41 |
| Water Quality Piper Plot – Flowing Wells Sample Locations |    |
| Water Quality Piper Plot – Dixon Springs Sample Locations |    |
| Water Quality Piper Plot – Dixon Wells Sample Locations   |    |
| Water Quality Piper Plot – IBS Springs Sample Locations   |    |
| Water Quality Piper Plot – MOFN Wells Sample Locations    |    |
| Water Quality Durov Diagram – All Sample Locations        | 47 |
| Gibbs Ratio Analysis                                      |    |
| Chloride/Sulfate Ratio Plot                               |    |
| HCO3 <sup>-</sup> /TDS Ratio Plot                         |    |
| SO4 <sup>2-</sup> / TDS Ratio Plot                        | 51 |
| Silicate Mineral Plot                                     |    |
| Saturation Indices Plots                                  |    |
| Flowing Wells                                             |    |



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

| MOFN Wells                                 |    |
|--------------------------------------------|----|
| Dixon Wells                                | 61 |
| Springs/Creek                              |    |
| Water Quality Radial Plot – Artesian Wells |    |
| Water Quality Radial Plot – Dixon Springs  |    |
| Water Quality Radial Plot – Dixon Wells    |    |
| Water Quality Radial Plot – MOFN Wells     | 71 |
| Water Quality Radial Plot – PR-IBS Springs |    |
| Purge and Sampling Table                   |    |
| Pictorial Log                              |    |
| Full Laboratory Report                     |    |



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

August 7, 2021

Raymond L Straub Jr., P.G. Straub Corporation P.O. Box 192 Stanton, Texas 798782

Presidio County Underground Water Conservation District P.O. Box 606 300 N. Highland Marfa, Texas 79843

Location Alamito Creek Area, Casa Piedra, Presidio County, Texas

Reference Interconnectivity of Flowing Wells and Springs in the Casa Piedra Area.

#### Scope

Provide geoscientific and hydrogeologic assistance to the Presidio County Underground Water Conservation District (PCUWCD) in Presidio County, Texas to help potentially determine if a relationship exists between the waters of the flowing wells and the waters of the surface springs in the Alamito Creek area near Casa Piedra and the Dixon Water Foundation Properties (Sample Locations).

#### Study Area

The Alamito Creek study area (Site Map) begins approximately 24 miles south of Marfa, Texas off Ranch Road 169 and continues south on Ranch Road 169 an additional 20 miles to the Casa Piedra area. The Study Area is confined to the Alamito Creek drainage area and consists of seeps, springs, and water wells; both pumped and flowing.

#### Method of Study

#### Preliminary Data Review

A preliminary data review was conducted of the Alamito Creek area near Casa Piedra and the Dixon Water Foundation properties. Topographic, geologic, structural trends, and TWDB water chemistry and water well information was reviewed for potential relationships to the flowing wells and springs.

#### Site Specific Field Visit and Sample Collection

A four-day, site-specific field visit and sampling event was conducted in the Alamito Creek area to observe local geology and collect water samples from several wells and springs. The Presidio County UWCD acquired legal access from landowners to enter the properties for the field investigation and sampling.



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

Water Quality Analysis

Water quality is often utilized as a source indicator of groundwater systems. Water samples were collected from the identified springs, creeks, and wells following an approved groundwater sample plan. Groundwater and surface water samples were analyzed by a NELAC/NELAP certified laboratory for the following analytes (Table 1):

| Wat                              | er Quality | Analysis                      |
|----------------------------------|------------|-------------------------------|
| Analyte                          | Units      | Analysis Method               |
| Cations                          |            |                               |
| Calcium                          | mg/l       | EPA Method E-200.7            |
| Sodium                           | mg/l       | EPA Method E-200.7            |
| Potassium                        | mg/l       | EPA Method E-200.7            |
| Magnesium                        | mg/l       | EPA Method E-200.7            |
|                                  |            |                               |
| Anions                           |            |                               |
| Chloride                         | mg/l       | EPA Method E-300.0            |
| Bromide                          | mg/l       | EPA Method E-300.0            |
| Fluoride                         | mg/l       | EPA Method E-300.0            |
| Nitrate                          | mg/l       | EPA Method E-300.0            |
| Sulfate                          | mg/l       | EPA Method E-300.0            |
|                                  |            |                               |
| Alkalinity                       | mg/l       | EPA Method E-310.1            |
| Bicarbonate (HCO <sub>3</sub> -) | mg/l       | EPA Method E-310.2            |
| Total Dissolved Solids           | mg/l       | Method SM2540C / 160.1        |
| рН                               |            | EPA Method 9040               |
| Arsenic                          | ug/l       | EPA Method E-200.8            |
| Silver                           | ug/l       | EPA Method E-200.8            |
| Silica                           | mg/l       | EPA Method E-200.7            |
| Iron                             | mg/l       | EPA Method E-200.7            |
| Specific Conductivity            | uS/cm      | SM2510B                       |
|                                  |            |                               |
| Uranium                          | ug/l       | EPA Method E-200.8            |
| Oxygen-18/Deuterium Isotope      | 0/00       | Cavity Ring-Down Spectroscopy |

Table 1

#### Isotope Analysis

Stable Isotopic Analysis of water can help determine the origin of groundwater and assist in correlating that water to other regional waters. Water samples were collected for analyses of stable isotopes of hydrogen and oxygen by  $^{2}H/^{1}H$  and  $^{18}O/^{16}O$  ratios by Cavity Ring-Down



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

Spectroscopy to provide comparative data about the potential source waters within the Alamito Creek study area. Water samples were collected from each sample location and sent to the Texas A&M Stable Isotope Geoscience Facility in College Station, Texas.

Data Presentation

The water quality data were analyzed utilizing various industry standard plotting methods such as a Radial Plot, a Piper Plot, a Durov Plot, a Gibbs Plot, Linear Regression Comparison Plotting of Various Constituents for the comparison of naturally occurring groundwater, and with PHREEQC, a USGS geochemical modeling program. Isotopic data were plotted on a scatter plot against a trendline for the global meteoric water line (GMWL).



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

Site Map





P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

### Sample Locations

| Project Name       | LOCATION N (WGS-84) | LOCATION E  | Type | Sampled | Flow Rate (GPM) | Sample Rate | Static Level<br>(ft) | MP (ft) | Total Depth<br>(ft) ( | Elevation<br>DEM- ft-MSL) | GW Elevation<br>(ft-MSL) | Conductivity<br>(uS/cm | Temperature<br>(C) |
|--------------------|---------------------|-------------|------|---------|-----------------|-------------|----------------------|---------|-----------------------|---------------------------|--------------------------|------------------------|--------------------|
| Artesian Wells     |                     |             |      |         |                 | GPM         |                      |         |                       |                           |                          |                        |                    |
| PR-000384          | 29.724520           | -104.05623  | AW   | ۶       | ~13             | 1.67        | Flowing              | _       | 600                   | 3451                      |                          | 504                    | 27.8               |
| PR-000492          | 29.86688            | -104.01915  | AW   | ۶       | ~30             | 30          | Flowing              |         | 1185                  | 3762                      |                          | 524                    | 31.2               |
| PR-SKRMAW1         | 29.7177             | -104.06676  | AW   | >       | 20.3            | 1.67        | Flowing              |         | ~300                  | 3413                      |                          | 588                    | 27.7               |
| PR-AVAW1           | 29.73596            | -104.05403  | AW   | ۶       | 9               | 9           | Flowing              |         |                       | 3448                      |                          | 335                    | 27.1               |
| Springs            |                     |             |      |         |                 | ml /min     |                      |         |                       |                           |                          |                        |                    |
| PR-IBS1            | 29.96671            | -104.00608  | SP   | ۶       | Pumped ~70      | 70 GPM      | 2.25                 | 1.4     | 19.5                  | 3985                      | 3984.15                  | 485                    | 23.3               |
| PR-IBS2            | 29.95284            | -104.0152   | CF   | ۶       | 0               | 217         |                      |         | 9                     | 3916                      | 3916                     | 727                    | 12.6               |
| PR-DXS1            | 29.8923             | -104.01544  | CF   | 7       | 0               | 211         | 0.58                 | 0.3     | 9                     | 3802                      | 3801.72                  | 1170                   | 8.5                |
| PR-DXS2            | 29.890632           | -104.014997 | CF   | ۶       | 0               | 217         |                      |         | 9                     | 3796                      | 3796                     | 778                    | 17.5               |
| PR-DXS3            | 29.912256           | -104.007011 | CF   | ۶       | 0               | 217         | 2.78                 | 1       | 3.99                  | 3843                      | 3841.22                  | 713                    | 16.3               |
| Water Wells        |                     |             |      |         |                 | GPM         |                      |         |                       |                           |                          |                        |                    |
| PR-DXW1            | 29.919731           | -104.029092 | ww   | ۶       |                 |             |                      |         |                       | 3924                      |                          | 605                    | 21.4               |
| PR-DXW5            | 29.88122            | -104.01708  | ww   | 7       |                 |             | 61.58                | 0.92    |                       | 3814                      | 3753.34                  | 692                    | 23.2               |
| PR-MOFNWW1         | 29.95008            | -104.02621  | ww   | ۶       |                 | 12          |                      |         | ~300                  | 4044                      |                          | 572                    | 22.4               |
| PR-MOFNWW2         | 29.93361            | -104.02574  | ww   | ۶       |                 | 25          |                      |         | ~300                  | 3950                      |                          | 513                    | 25                 |
| Water Wells not sa | ampled              |             |      |         |                 |             |                      |         |                       |                           |                          |                        |                    |
| PR-CPW M#1         | 29.72631            | -104.0562   | ww   | z       |                 |             | 17.7                 | 1.625   |                       | 3415                      | 3398.925                 |                        |                    |
| PR-CPW M#2         | 29.72601            | -104.05687  | ww   | z       |                 |             | 14.79                | 0.91    |                       | 3414                      | 3400.12                  |                        |                    |
| PR-DXW M#1         | 29.91975            | -104.0291   | ww   | z       |                 |             | 42                   | 0.5     |                       | 3924                      | 3882.5                   |                        |                    |
| PR-DXW M#2         | 29.9265             | -104.03871  | ww   | z       |                 |             | 128.8                | 1       |                       | 3983                      | 3855.2                   |                        |                    |
|                    |                     |             |      |         |                 |             |                      |         |                       |                           |                          |                        |                    |



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

#### Study Area Geology

The near surface geology (Site Map) of the Alamito Creek area consists predominately of members of the Buck Hill Volcanic Series of Paleogene extrusive volcanic rocks of the Oligocene Epoch. The eastern side of Alamito Creek consists of volcanic rock members of the Duff formation and the Mitchell Mesa Rhyolite Formation. The western side of Alamito Creek is comprised of the Tascotal Formation, Perdiz Conglomerate, and the Rawls Basalt Formation. Intersperse across the southern end of the study area and rising above the erosional floor of the Alamito Creek are intrusive igneous rocks of the Cienega Mountains, La Vuida, San Jacinto Mountains, and Cerro Boludo (Geologic Scale).

#### **Duff** Formation

The Duff Formation (Td) consists of rhyolitic tuff and tuffaceous sediments of clay, silt, sandstone, and conglomerate of variegated colors of gray, tan, pink, and red. The upper part of the formation consists of porphyritic lava flows with compositions ranging from rhyolite to trachyte (Davis, 1961).

#### Mitchell Mesa Rhyolite

The Mitchell Mesa Rhyolite Formation (Tmm) is the most voluminous and widespread ash-flow tuff of the Trans-Pecos area in Texas. It is a multiflow, single-cooling-unit, ash-flow tuff of high-silica rhyolite (Barnes, 1992).

#### **Tascotal Formation**

The Tascotal Formation (Tta), which makes up a significant portion of the study area along the Alamito Creek, consists in the upper part of sandstone, tuffaceous sandstone, and conglomerate. The sandstone is medium to coarse grained and consists of glass shards which compose the fine fraction of the formation with a continuous size graduation with pumice fragments (Walton, 1979). The conglomerate consists of pebble to cobble conglomerate, mostly limestone, some igneous rocks and chert. A significant portion of the interval is tuff and sandy tuff. The lower part is tuff, flaggy, slightly calcareous, light colored with some interbeds of tuffaceous, fine-grained sandstone (Barnes, 1992). The most abundant heavy minerals found in the Tascotal Formation are magnetite and biotite. Both minerals have been oxidized through diagenesis. Due to their abundance, the alteration of these silicic minerals provides silica, iron, and other elements for diagenesis (Walton, 1979).

#### Petan Basalt

The Petan Basalt (Tpe), also known as the Jones Formation of southern Davis Mountains, is found on the northern and eastern side of the study area. The Petan is not considered part of the Buck Hill Series; rather part of the Southern Rim Rock Country and is a sequence of porphyritic trachyte lavas that overlie the Mitchell Mesa Ignimbrite north and west of the Infiernito caldera (Barnes, 1992).



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

#### Perdiz Conglomerate

The Perdiz Conglomerate (Tpc) is found on the northwestern, western, and southwestern side of the study area, considered an upper member of the Tascotal formation by some, consists of fanglomerate of highly variable composition shed mostly eastward from the Chinati Mountains which include clasts as large as one meter in diameter and also includes clasts from the Infiernito caldera to the north (Barnes, 1992).

#### Oligocene Intrusive Igneous Rocks

The Intrusive Igneous Rocks (Ti) are represented in the study area by the Cienega Mountains, La Vuida, San Jacinto Mountains, and Cerro Boludo. They are made up of stocks, laccoliths, sills, and dikes. The major rock types consist of basalt, hawaiite, mugearite, trachyte, quartz trachyte, rhyolite, phonolite, latite, trachyandesite, and their coarser grained equivalents (Barnes, 1992).

#### **Rawls Formation**

The Rawls formation (Tr) comprises the mesa which rises from the floor of the Alamito Creek in the southern portion of the study area near Casa Piedra. It consists of trachyte; trachyandesite; latite porphyry; trachybasalt porphyry, nonwelded to thoroughly welded crystal-vitric to lithic-vitric, ash-flow tuff; latite porphyry; basalt; and volcanic mudflows consisting of latite, basalt, tuff, sandstone, and conglomerate with some diorite and olivine syenite (Barnes, 1992).

#### Quaternary Alluvium

The Quaternary Alluvium consist of older alluvium (Qao) and younger Alluvium fans (Qf). The older alluvial deposits of Pleistocene age are comprised of alluvium, colluvium, and caliche on surfaces dissected by modern drainage. Some pebbles, cobbles, boulders up to 4 ft in size can be found intermixed with sand. The alluvium may be unconsolidated to partly consolidated by calcic cement. It is composed of chert, quartzite, limestone, and volcanic rocks of vesicular, aphanitic, and porphyritic textures (Barnes, 1992). The younger alluvium fans of Pleistocene and Holocene age are found in the modern drainage features and consist of colluvium and fan deposits of gravel, sand, silt, and clay. Thin beds of caliche occur in the silt or interstitially in the layers of gravel (Davis, 1961).

#### Geologic Structure

Most of the study area is covered by numerous episodes of volcanic flows and erosional relief. The northern portion of the study area is crossed by the Texas Lineament, a northwesterly trending fault zone. The Texas Lineament is known as an approximately 80-kilometer-wide zone of recurrent deformation that trends northwesterly across the Trans-Pecos region. The area is potentially related to a fundamental crustal discontinuity. West-northwest-striking faults and flexures active during Precambrian, Paleozoic, early Mesozoic, Laramide, and Basin-and-Range tectonic events parallel the Texas Lineament (Muehlberger, 1980).



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

Geologic Scale

| Geo    | ologic Format | ions of the | Alamito Creek Area, Presidio | County, Texas      |
|--------|---------------|-------------|------------------------------|--------------------|
| Period | Epoch         | Group       | Formatio                     | on                 |
| irnary | Holocene      |             | Quaternary Allu              | ivium Fan          |
| Quate  | Pleistocene   |             | Quaternary Olde              | er Alluvium        |
|        |               |             | Rawls Form                   | ation              |
|        |               |             | Oliogocene Intrusive         |                    |
|        |               | d           | Igneous Rocks                |                    |
| gene   | cene          | ll Grou     | Perdiz Conglo                | merate             |
| Palec  | Oligo         | uck Hi      | Tascotal Formation           | Petan/Jones Basalt |
|        |               | В           | Mitchell Mesa                | Rhyolite           |
|        |               |             | Duff Forma                   | ation              |

References: TWDB, USGS, BEG, NMGS



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

#### Narrative of Field Work

Straub Corporation's geoscience crew arrived at the Casa Piedra Guesthouse on Alamito Creek during a snowstorm and freezing weather the evening of Sunday, February 14, 2021.

Field work commenced Monday, February 15, 2021, with the sampling of the flowing well PR-000384 at the Casa Piedra Guesthouse on Alamito Creek. The groundwater samples were collected via a valve located on the discharge of the flowing well (Purging Table).

Two windmills were located on the same property near Alamito Creek: PR-CPWM#1 and PR-CPWM#2. Groundwater samples were not collected on these wells; however, water level measurements were captured and are referenced in the sample locations table.

Groundwater samples were collected from the flowing well PR-SKRMAW1 from a discharge line connected to the well head. Later in the afternoon flowing well PR-AVAW1, was sampled from a metal pipe connected to the well head that discharged into a small trough.

February 16, 2021

The geoscience crew met with Phillip Boyd of the Dixon Water Foundation and Caroline Macartney and Trey Gerfers of the Presidio County Underground Water Conservation District (PCUWCD) on February 16, 2021, to collect water samples from the Dixon Water Foundation creek pools. After some difficulty accessing the pool areas, groundwater samples were collected from the soil immediately adjacent to the pools via a peristaltic pump through sample tubing installed into hand-driven drive rods designed for groundwater sampling.

#### February 17, 2021

On February 17, 2021, the geoscience crew met with Carolyn and Trey at the MOFN Ranch. The first well sampled on the MOFN Ranch was PR-MOFNWW1 through a water spigot, followed by well PR-MOFNWW2 via the discharge from a solar submersible pump.

The geoscience crew and PCUWCD members met the property owner of the northern most sample locations that afternoon and followed him to the Penitas Springs area. The spring, PR-IBS1, consisted of a once flowing well that was now being pumped via a submersible solar pump. The well was sampled from the discharge line that feeds the nearby pond.

After sampling PR-IBS1, the owner took us on a tour of his property. We visited the Alamito Creek area as well as the nearby train trestle that spanned the creek.

Later in the afternoon, the geoscience crew, and members of the PCUWCD located the sample point for PR-IBS2 along the Alamito Creek west of the train trestle. The sample point was located next to a standing pool in the flow path of the creek. Drive rods were installed into the soil near the pool. Once installed, the peristaltic pump was connected to the rods via new poly tubing. The sample point was purged, and a groundwater sample was collected.



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

The geoscience crew and members of PCUWCD arrived at the Plata Siding, (PR-000492), near dark. An external discharge valve to the main tank was found to be operational and the tank was overflowing water from the top of the tank onto the ground. The external discharge valve was cracked open to allow water to discharge at a constant rate of approximately 30 gallons per minute, at which time, the overflow from the top subsided. Water quality measurements were collected during purging and water samples were collected following a stabilized trend. The valve was closed and secured after sampling, and water once again started flowing over the top.

February 18, 2021

The geoscience crew arrived at well PR-DXW5 on the Dixon Water Foundation following a delayed start due to potential snow and freezing weather. The well was found not pumping on arrival. Since the well was not pumping, a static water level measurement was collected. The well was purged for approximately 30 minutes and then sampled.

The geoscience crew arrived on the site of PR-DXW1 by mid-afternoon. The PR-DXW1 well was an electric submersible well setup to supply water for a cattle operation. The well was a manual start system and not running when we arrived. The well had a sample port on top, but no access to the wells interior to measure groundwater. Approximately 200 feet east of the well was a non-operational windmill water well near the cattle water tank. There was an access to the interior of the well from which a static water level was collected. The operational well was started and purged for approximately 15 minutes before the water sample was collected.

All the water wells, springs, and creek pools had been sampled by the later part of the afternoon and with time and daylight remaining, the geoscience crew went back to the Alamito Creek near the train trestle to observe some of the local geology.

The railroad trestle spans the Alamito Creek and exits into a cut into the hillside where some of the upper part of the hill is cut away exposing a part of the geologic cross section. Near the trestle the Alamito Creek makes a turn westerly where it creates a long pool of standing water. At the pool, the hill is sharply cut to expose a shear rock face where the overlying conglomerate formation can be seen lying unconformably over an erosional surface of volcanic tuff.

The Alamito Creek reach east of the trestle and rock face can be seen flowing and moving water into the area of the pool of standing water; however, only a limited amount of water can be seen exiting the area down the stream to the west. Slightly further west down the channel way, water movement ceases all together, leaving only intermittent disconnected small pools.

Leaving the site took the geoscience crew past the spring PR-IBS1, where they noticed the pump was not pumping. At that time, they took the opportunity to collect a static water level measurement from the well. As the crew were driving down the private road toward Ranch Road 169, they noticed visible sparry calcite on the floor of the road. Sparry calcite is an indicator of a sealed fault with fault gouge. A geologic measurement was made of the orientation



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

of the feature. The feature was trending approximately 327° NW, which is similar to the trend of the fault network of the Texas Lineament.

#### February 19, 2021

The Straub Corporation Geoscience crew carefully packaged all the samples on ice in coolers for transportation and delivery to the laboratory in Midland, Texas. The crew departed early in the morning for the long trip. The roads were still frozen and covered with ice and snow for most of the journey. The return trip was uneventful, and the samples arrived at the laboratory in good order without incident.

#### Water Wells

Drillers logs and water well data were reviewed from the Texas Water Development Board online database. Unfortunately, most of the wells that were sampled did not contain construction information, and the few that did, were too inconsistent to utilize for subsurface references in conjunction with this report.

#### Water level Measurement and Potentiometric Surfaces

Water level measurements were collected where available and accessible. For measurements to be accurate, a well could not be pumping or flowing. Some submersible pumps were pumping prior to measurement and sampling, and none of the flowing wells could be shut-in for pressure measurements.

Determining a water level gradient or a potentiometric surface requires at least three points of reference within a reasonable proximity of each other from the same formational zone. The geology, topographic elevation, and location of available measurement points within the Alamito Creek area created difficult conditions to achieve satisfactory results for the creation of a potentiometric surface. Data density and spatial orientation was not satisfactory to analyze stream flow conditions to determine stream gaining or losing status. Additional work will be required to determine groundwater elevation and stream orientation for the Alamito Creek area.

#### Summary of Sampling Methodology

Groundwater sampling procedures can be split into four tasks: measurement, purging, sampling, and decontamination.

#### Sample Location configuration

Three general types of locations were encountered during the field study: continuous flowing artesian wells, pumping non-flowing groundwater wells with electric submersible pumps, and surface water pools where 1-inch perforated steel drive points were manually installed near each pond to withdraw water with a peristaltic pump and tubing.



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

#### Water-Level Measurement

(When Possible and accessible) Prior to obtaining a water-level measurement, a clean surface area was created to which sampling equipment could be positioned and work could be performed. In accessible wells, static water level was measured from the top of casing to the static water level to the nearest 0.01 foot utilizing a Heron water-level meter or a Powers electric water-level meter.

Following the measurement of the static water level, the measuring point was established from the ground surface to the top of casing. All available depth measurements were made from top (the highest point) of the inner well casing on the northern side of the well.

#### Purging

Purging is the process of removing stagnant water from a well or sample location prior to sampling and replacing it with groundwater from the adjacent formation. Purging was performed for all locations prior to sample collection in order to remove stagnant or disrupted water from within the well casing or drive point and ensure that a representative formation sample was obtained. In all cases temperature and specific conductance were monitored during purging. The data values were recorded into the field logbook.

#### Sampling

Sampling is the process of collecting, containerizing, and preserving the groundwater sample after the purging process is complete. Representative groundwater samples were collected from each location into new laboratory provided sampleware. Glass sampleware were packaged in reduced impact packaging for shipping. All samples were maintained on ice for the entire duration of the field activity until they were delivered to the Laboratory. Sampling time and date were collected at the time of each sampling event.

#### Equipment and Supplies

Table 1. listed below identifies the types of equipment which was used for groundwater sampling applications.

Table 1. Equipment List

Purging/Sample Collection: Masterflex Model 7024 Peristaltic Pump ¼" HDPE poly-tubing

Sample Preparation/Field Equipment:

Extech Ex-Stik II Specific Conductance/Thermometer Meter Powers – 500' Electric Water-Level Measurement Equipment Heron – 300' Dipper T Water Level Meter



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

Additional equipment to support sample collection and provide baseline worker safety was required to some extent for each sampling task. The additional materials were separated into two primary groups: general equipment which is reusable and materials which are expendable.

General: Project-specific sampling program, Decontamination and Cleaning solutions (Distilledwater, Alconox Detergent in spray bottles), Site-specific Health & Safety equipment (gloves, goggles, snake guards, coats), Field data sheets and logbook, Preservation solutions, Sample containers, and intermediate containers, Coolers and ice, Tools, Sample drive probes, Hand auger, Shovel, Slide hammer, and First Aid kit.

#### **Expendable Materials**

Disposable Nitrile Gloves (chemical resistant), Chemical-free paper towels, and Trash containers, and Sample Tubing.

#### Decontamination

The purging equipment was decontaminated immediately before and after use with a solution of distilled water and Alconox laboratory detergent followed by a distilled water rinse to ensure against cross-contamination from one sample to the next. The discharge piping was decontaminated for each flowing and pumping well, while the drive assembly was decontaminated for each driven location. New tubing was utilized for each driven location for sample collection.

#### Water Quality and Isotope Analysis

#### Groundwater Quality

Nearly all groundwater originates as rain or snowmelt that subsequently enters the underlying subsurface geologic material. Precipitation based water, as it infiltrates the soil and geologic material to become groundwater, is altered as it takes on mineral matter. Groundwater, as it moves along flowlines from recharge to discharge areas, is chemically altered by the effects of a variety of geochemical processes (Freeze & Cherry, 1979).

This investigation was not designed as an in-depth geochemical analysis, but rather an overview and comparison of geochemical and isotopic signatures of sampled wells and springs within the area. The intent of this analysis was to graphically compare water chemistries of the wells, springs, and creek pools to determine if a potential relationship was discernable.

Basic water chemistry is broken into classifications of water quality based on the content of total dissolved solids (TDS). *Fresh water* is classified as waters with less than 1,000 mg/l TDS, while *brackish waters* range from approximately 1,000 to 10,000 mg/l TDS. The *Saline water* range is 10,000 to 100,000 mg/l TDS. Sea water is approximately 35,000 mg/l TDS, and *Brine waters* are significantly more saline with TDS over 100,000 mg/l (Freeze & Cherry, 1979).



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

Groundwater, as it moves along its flow path, tends to increase in dissolved solids. Shallow groundwater in recharge areas tend to be lower in total dissolved solids than in deeper parts of the system. Groundwater in discharge areas tends to also be higher in total dissolved solids than in recharge areas. The evolution of groundwater tends to evolve towards more saline water. This evolution is normally accompanied by the following regional changes in dominant anion species: (Freeze & Cherry, 1979)

As water travels along a flow path  $\rightarrow$   $HCO_3^- \rightarrow HCO_3^- + SO_4^{2-} \rightarrow SO_4^{2-} + HCO_3^- \rightarrow SO_4^{2-} + Cl^- \rightarrow Cl^- + SO_4^{2-} \rightarrow Cl^-$ Increasing in age  $\rightarrow$ (Freeze & Cherry, 1979)

- 1. The upper zone is generally characterized by active groundwater low in TDS and rich in  $HCO_3^-$  which is derived from soil zone CO<sub>2</sub> and from the dissolution of calcite and dolomite. Since calcite or dolomite minerals occur in most sedimentary basins and dissolve rapidly in the presence of CO<sub>2</sub><sup>-</sup> charged groundwater,  $HCO_3^-$  is almost invariably the dominant anion in recharge areas.
- 2. The intermediate zone is generally less active in groundwater circulation and higher in TDS. Sulfate is normally the dominant anion in this zone. The most common sulfate bearing minerals are gypsum and anhydrite.
- The lower zone is characterized by very sluggish groundwater flow. High concentrations of chloride and total dissolved solids are characteristics of this zone. (Freeze & Cherry, 1979)

#### Saturation Index

The  $(S_i)$  or saturation index is the relationship between (Q) the reactant and the product or the comparison between a minerals dissolution-precipitation reaction at a specific time, space, and  $(K_{eq})$  thermodynamic equilibrium condition. This process is useful for aqueous geochemical speciation modeling.

$$S_i = \frac{Q}{K_{eq}}$$

Speciation modeling is a complex process of simulating aqueous geochemical reactions, evolution, and transport processes in natural or contaminated water. PHREEQC (Parkhurst and Appelo 1999) is a USGS aqueous geochemistry modeling software which is utilized for speciation modeling. Speciation modeling is useful for estimating possible mineral dissolution and precipitation. Speciation modeling uses a chemical analysis of a water to calculate the distribution of aqueous species by using an ion-association aqueous model. The most important results of speciation calculations are saturation indices for minerals, which indicate whether a



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

mineral should dissolve or precipitate (U.S. Geological Survey, 2002). PHREEQCI version 3.7.0 4/27/2021 was utilized to estimate the saturation indices for this project.

#### Isotopes

Stable isotopes of oxygen and deuterium can be utilized in a variety of ways to study the influences of precipitation and groundwater in hydrogeological studies. Isotopes of oxygen <sup>18</sup>O/<sup>16</sup>O and hydrogen <sup>2</sup>H/<sup>1</sup>H are found in specific ratios (R) of water molecules. These ratios are presented as delta units ( $\delta$ ) per mille ( $\infty$ ) in relative difference to the known standard called the *standard mean ocean water* (SMOW):  $\delta \infty = [(R-R_{standard})/R_{standard}] \times 1000$  (Freeze & Cherry, 1979).

These ratios can be utilized to track water molecules through the hydrologic cycle. Once water is evaporated from the ocean and moves inland through subsequent rain and evaporation events, heavy isotopes of <sup>18</sup>O and <sup>2</sup>H become depleted. Condensation and isotope fractionation are both temperature dependent. These effects create strong continental and seasonal trends in average annual isotopic concentrations in precipitation. These isotope ratios are affected by evaporation, post precipitation and do not follow the same original ratio relationship (Freeze & Cherry, 1979).

Stable isotope ratios are affected by evaporation due to fractionation. Precipitation-based soil water, in arid regions that have undergone partial evaporation prior to infiltration, produces a unique isotope signature that becomes a characteristic property of the subsurface water. These characteristics can be tracked to determine source and mixing of various groundwater sources (Healy, 2012).

Through numerous studies and efforts, the ratios of <sup>18</sup>O and <sup>2</sup>H concentrations have been obtained through precipitation surveys throughout the world, with the establishment of the global meteoric water line presented below:

 $\delta^{2}$ H‰ = 8  $\delta^{18}$ O‰ + 10 (Craig 1961)

A linear relationship between the global line and the local line can be established and utilized to help understand the influences of precipitation, runoff, evaporation, and infiltration in hydrological investigations (Freeze & Cherry, 1979).

Water Quality Data Analysis Methods

The water quality data were analyzed utilizing the follow industry standard plotting methods:

- Linear Regression Plot for Stable Isotopes of Oxygen-18 / Deuterium isotopic data plotted on a scatter plot against a trendline of the global meteoric water line (GMWL)
- Piper Plot for diagraming Cation and Anion concentrations from multiple samples into one plot with grouping.



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

- Durov Plot for diagraming Cation and Anion concentrations similar to the Piper but with TDS concentration and pH comparison.
- Gibbs Ratio Analysis compares the ratio of sodium and calcium to TDS against a graphical plot for evaporation, dilution, and weathering. It allows for the analysis of multiple samples with grouping.
- Linear Regression Plot of the ratio of Chloride to Sulfate for the analysis of naturally occurring waters to connate waters.
- Linear Regression Plots of Sulfate to TDS and Bicarbonate to TDS ratios for the analysis of the progress of naturally occurring waters along their evolution path.
- Radial Plot of Silicate Minerals (Cations) for the analysis of the evolution of mineral from naturally occurring waters in an igneous system.
- Radial Plot of Major Cations and Anions in milliequivalents per liter (meq/l) on a logarithmic plot for graphical comparison.
- Graphical Plot of the Saturation Indices for the speciation of minerals from the analysis of aqueous geochemistry utilizing PHREEQCI Version 2, a USGS geochemical modeling program.

#### Result of Analyses

#### Isotopes

The analysis of groundwater samples from the utilization of stable isotopes of oxygen-18 and deuterium resulted in approximately two categories of results; the Flowing Wells and deeper pumping MOFN Wells shared a similar ratio and the springs, creek pools, and shallow wells shared a similar ratio (Stable Isotope Analysis).

The average stable isotope value for the region from east to west is approximately -7.5  $^{18}$ O and - 50  $^{2}$ H to -10  $^{18}$ O and -70  $^{2}$ H (Drever, 1988). The average for the springs, creek pools, and shallow wells was -7.19  $^{18}$ O and -48.80  $^{2}$ H while the average for the flowing wells and MOFN wells was -8.56  $^{18}$ O and -58.46  $^{2}$ H.

The range of the local isotope annual precipitation values, based on isotopic data for modern precipitation references from the University of Utah's Waterisotopes On-line database, an interpolated isotopic database, range from -8.7 <sup>18</sup>O and -57 <sup>2</sup>H in the higher altitude recharge areas of the Davis Mountains near Valentine, Texas to -6.2 <sup>18</sup>O and -40 <sup>2</sup>H within the Alamito creek area (Bowen, 2021).

The isotopic data for all the sampled locations appear to fall near the Global Meteoric Water Line (GMWL) indicating the groundwater is meteoric or precipitation based. The samples from the Flowing Wells and MOFN Wells appear to fall close to the modern-day isotopic values of the Davis Mountains and near the western regional values of the area. The springs, creek pools, and shallow wells tend to fall below the modeled modern values of Alamito Creek, but fall within regional values.



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

The Flowing Wells and MOFN Wells isotope values are clustered close together with minimal variation. The springs, creek pools, and shallow wells isotope values do not share as tight a grouping. As a group they tend to fall close to the GMWL with several falling off the line toward an evaporation profile. The samples that fall toward the evaporation profile are PR-IBS2, PRDXS1, and to a lesser degree PR-IBS1. Sample locations PR-IBS2 and PR-DXS1 are both associated with open channel flow which are both subject to potentially evaporated water, which will tend to move the profile away from the GMWL. PR-IBS1 is the Penitas Spring which has a pool of standing water near the spring. Evaporated waters from the nearby pool could potentially cross flow and partially influence some of the waters discharged from the spring well, helping to drive the analysis towards an evaporation profile.

Groundwater tends to have flow lines from recharge to discharge proportional to depth. Shallow groundwater tends to have shorter flowlines while deeper groundwater tends to have much longer flowlines and residence times (Freeze & Cherry, 1979). Based on the placement of the sample locations on the GMWL line in comparison to modern isotopes, the shallow near surface waters of the springs, creek pools, and shallow wells are most likely associated with precipitation along the upper reaches of the drainages of the Alamito Creek area and the associated recharge zones along its flow path. The water from the Flowing Wells and MOFN Wells, though they tend to match with modern isotopic signatures from the Davis Mountains, due to the depth and distance from the potential recharge area, the water is most likely a representative of precipitation-based recharge from a cooler time in the past.

#### Water Quality

The Total Dissolved Solids (TDS) of a liquid, as the name suggests, is a measurement of the concentration of elements that make up the aqueous chemistry of a fluid or water. The TDS of the groundwater samples ranged from 231 mg/l to 704 mg/l with an average of 370 mg/l of total dissolved solids. The water quality of the groundwater from a TDS perspective is well within the freshwater classification (Laboratory Results).

A common method for graphically representing groundwater geochemical characteristics or profiles is to utilize the major cation and anion relationships of groundwater samples. The Piper Plot (Piper 1944) and the Durov Plot (Durov/Zaporozec 1972) use major cation and anion relationships be separating the major cations (Ca, Na, Mg, K) and major anions (Cl, CO<sup>3</sup>, HCO<sup>3</sup>, SO<sup>4</sup>) based on milliequivalents per liter into two triangles. Each water sample is located in the representative cation/anion triangle based on percentage of concentration of each ion species (Freeze & Cherry, 1979).

The Piper Plot projects intersecting lines from each triangle onto a plotting diamond, which is broken into major quadrants of water types for grouping and identification. The Durov Plot extends the analyses from just major cation/anion to TDS and pH. The Durov Plot is primarily utilized for visualizing the differences in various water types and for group identification (Freeze & Cherry, 1979).



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

#### Piper Plots

The analysis of the Piper Plots (<u>Piper Plots</u>) revealed a relevant difference between the sampled water types. The plots were broken down into five (5) categories; Flowing Wells, MOFN Wells, Dixon Wells, Dixon Springs, and IBS Springs.

The Piper Plot or Trilinear Plot displays the major cations and anions in milliequivalents per liter on a graphical presentation to help facilitate the understanding of the hydro-chemical facies and chemical evolution of a natural groundwater source (Freeze & Cherry, 1979).

Based on the analysis of the sampled waters utilizing the Piper Plot, the "Flowing Wells" all demonstrated a remarkable similarity. These waters can be classified as a Sodium Bicarbonate type groundwater, demonstrating concentrations of both Sodium and Bicarbonate constituents. The "MOFN Wells", though slightly different in chemical make-up and multiple hundreds of feet shallower and miles away, displayed a significant similarity to the "Flowing Wells" with a Sodium Bicarbonate type profile.

The Dixon water wells; PR-DXW1, and PR-DXW5 were plotted together. Though plotted together, they do not share the same water type. PR-DXW1 is on the western side of the Alamito Creek in a tributary plain and PR-DXW5 is located on the eastern side of the creek on the terrace above the flood plain in the Tascotal formation. PR-DXW1 as a Magnesium Bicarbonate type profile, while PR-DXW5 has a somewhat less pronounced Sodium Bicarbonate type profile.

The "Dixon Springs" or the sample points located along creek pools in the Alamito Creek retained a similar or proximity grouping. The sampled waters shared a similar Sodium/Potassium-Bicarbonate profile as the previously sampled waters; however, they were far enough away to be considered a mixed or non-dominate type water classification and not Sodium Bicarbonate water.

The "IBS Springs" share a similar profile as the "Dixon Springs" profile and the PR-DXW1 water well. PR-IBS2 fell into the same mixed type category as the "Dixon Springs", while PR-IBS1 just edged into the Magnesium Bicarbonate rich type category similar to PR-DXW1.

#### Durov Plot

Based on the analysis of the groundwater samples utilizing the Durov Plotting method (Durov Plot), four distinctive groups appear. The Flowing Wells and MOFN Wells cluster closely, the springs and creek pools group together and are separated from the Flowing Wells and MOFN Wells. The PR-DXW5 well falls in between the two clusters, while the PR-DXW1 sits above the spring and creek group.

#### Gibbs Plot

The Gibbs Plot is predominately a surface water plot to analyze the chemical composition of surface waters through the relationship of TDS values and the  $Na^+/(Na^+ + Ca^{2+})$  ratios (Gibbs Plot). The Piper diagram is a graphical representation of the chemical composition of water in



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

terms of the eight major cations and anions, the Gibbs diagram only uses two cations directly. (Faure, 1998).

The Gibbs Plot indicates most of the water samples are aligned horizontally between 2 and 3 on the y-axis or along a central axis near the weathering interval. This potentially indicates that weathering of natural rock is the driving force in this plot. The springs, creek pools, and shallow wells tend to fall somewhat below the 1.0 ratio between 0.36 and 0.80, while the Flowing Wells and the MOFN Wells tend to fall close to the 1.0 ratio from 0.91 to 0.98.

#### **Regression Plots**

A regression analysis was utilized for ratios of Chloride/Sulfate, Bicarbonate/TDS, and Sulfate/TDS. A regression analysis utilized best fit for the slope of a line of an x/y intercept that runs through the center of a data set.

The regression calculations and R<sup>2</sup> values are as follows: The regression line for the Cl/SO<sub>4</sub><sup>2-</sup> Ratio was X = (Y \* 0.25369162) + 5.661795184 with an R<sup>2</sup> value of 0.85

The regression line for the HCO<sup>3-</sup>/TDS Ratio was X = (Y \* 0.597843303) + 52.44429758 with an R<sup>2</sup> value of 0.63

The regression line for the SO<sub>4</sub><sup>2-</sup>/TDS Ratio was X = (Y \* 0.226881893) + -43.97375269 with an R<sup>2</sup> value of 0.77

#### Chloride/Sulfate

The Chloride/Sulfate ratio (Chloride/Sulfate Plot) was utilized to understand the variability of brine waters and other non-brine naturally occurring waters. No significant rationale could be discerned from this plot. The data was proportionately scattered near the lower end of the plot with PR-DXS1 being an outlier. Some of the data appeared to create a line skewed from the main plot; however, it may only be a random occurrence from the methodology.

#### Bicarbonate/TDS

The Bicarbonate/TDS ratio (Bicarbonate/TDS Plot) was utilized to visualize the ratio of bicarbonate as an indicator of the relationship of quantitative exposure of the source waters to shallow bicarbonate rich environments. Indicated on the plot, the Flowing Wells cluster together below the trend line and sit the lowest on the left side of the plot followed by the MOFN Wells. The remaining sampled waters sit scattered above the trend line with PR-DXS1 as an outlier.

#### Sulfate/TDS

The Sulfate/TDS ratio <u>(Sulfate/TDS Plot)</u> was utilized to compare the water samples to an intermediate mixing zone where sulfate is the dominate characteristic. As seen on the plot, most of the samples clustered near the lower left of the plot with PR-DXS1 once again an outlier.



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

However, the Flowing Wells and the MOFN Wells are somewhat loosely clustered in the center of the sample group.

#### **Radial Plots**

Radial Plots are a graphical method for visualizing differing cation and anion geochemical characteristics of water samples. The Silicate Mineral plot <u>(Silicate Plot)</u> was utilized to graphically visualize the variation between the water sample on a logarithmic scale based directly on concentration in mg/l and on their relationship with volcanic rocks and the various formation types as listed in the geology section of this report.

The Major Cation/Anion Plot is a graphical method for visualizing differing cation and anion geochemical characteristics utilizing a radial logarithmic plot based on the milli equivalency of the constituents. It is specifically used for pattern recognition and comparison.

#### Silicate Mineral Plot

The Silicate Mineral Plots were divided into three groups: the Flowing Wells, the MOFN Wells and Shallow Wells, and the Creek Pools and Springs. The Flowing Wells grouped closely with a variation in the calcium concentration. This group was dominated by sodium and silica followed by calcium and potassium. Sodium and silica are indicative of igneous systems.

The MOFN Wells and Shallow Wells did not group as well. The MOFN Wells more closely resembled the Flowing Wells plot with a higher range of calcium. The Shallow Wells had a higher content of calcium, potassium, and additionally magnesium, which was absent from the Flowing Wells and MOFN Wells. This chemistry can also be associated with an igneous system of a differing rock type.

The Creek Pools and Springs visually share a similar profile; however, there are significant variations in the sodium, potassium, magnesium, and iron minerals. All the samples contained the additional mineral of iron, which was not present in the other groups; however, iron was absent in PR-DXS3.

#### Major Cation and Anion Plots

The Major Cation and Anion Plots (Cation/Anion Plot) were divided in five categories: Flowing or Artesia Wells, Dixon Springs or Creek Pools, Dixon Wells, MOFN Wells, and IBS Springs or Creek Pools. The Flowing Wells Plot contained all the flowing wells and presented a relatively good match and similar plot profile with PR-00492 representing the lower of the plot profiles.

The Dixon Springs or Creek Pools expressed a relatively similar visual plot outline with some variation between sulfate, nitrate, bromide, and chloride constituents. They did not share a profile similarity to the Flowing Wells.

The Dixon Wells Plot combined the two Dixon Wells sampled; PR-DXW1 from the western side of Alamito Creek and PR-DXW5 from the eastern side of Alamito Creek. The two plots showed



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

very little similarity, only coming close in bicarbonate. Nether shared a similar profile to the Flowing Wells.

The MOFN Wells Plot contained the two MOFN wells sampled. The two well plots appear quite similar. With a variation on sulfate, and minor variations on nitrate, bromide, and chloride. The MOFN Well Plots are the only plots to approach a similar profile to the Flowing Wells except for a significant variation in calcium.

The IBS Spring Plot contained PR-IBS1, the Penitas Spring; and PR-IBS2, a creek pool. The plots did not share visual similarities. PR-IBS1 more closely resembled PR-DXW1, while PR-IBS2 more closely matched the Dixon Springs Plots. None held similarity to the Flowing Well Plots.

#### Saturation Indices

Each water sample was modeled for the saturation indices utilizing the following constituents: Temp, pH, Ca, Na, Mg, K, Si, Fe, Cl, Br, F, NO<sub>3</sub>-, SO<sub>4</sub><sup>2-</sup>, and Alk. The saturation indices for the groundwater samples all shared similar profiles for hydrogen, oxygen, and silica related products. A comparison of the related indices are as follows <u>(Saturation Indices)</u>:

The saturation indices of the Flowing Wells shared a similar constituent composition and saturation profile with a minor addition of undersaturated Sylvite in PR-AVAW1 and PR-000384.

The MOFN Wells shared a very similar indices to the Flowing Wells with PR-MOFNWW1 sharing similarities to PR-000492, and PR-SKRMAW1. Groundwater sample PR-MOFNWW2 also shared similarities to samples PR-AVAW1 and PR-000384 with the addition of undersaturated Sylvite.

Samples PR-DXW5 and PR-DXS3 share very similar saturation profiles. Both locations share the eastern side of Alamito Creek and the Tascotal Formation.

Water samples PR-IBS2, PR-DXS1, and PR-DXS2 all share similar profiles. They have significant differences in species and saturation indices as well as precipitation potential of iron related products in comparison to all other waters sampled.

The saturation indices of PR-IBS1 and PR-DXW1 share a similar profile with similar constituents and indices.

#### Conclusion

Gravity, geologic depositional history, geologic structure, and precipitation are the controlling forces responsible for most groundwater sources. The geochemical makeup of groundwater is derived from the origins of the original evaporated ocean water as it moves on land. Once on land, the evaporated water is rained out as precipitation then evaporated once more as it moves



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

further inland from the ocean. Mixing between precipitation and surface waters occur as rain and snow are converted to runoff that enters the surface water hydrologic system. A portion of these waters are naturally diverted or captured as recharge or infiltration for aquifers.

Once in the ground and below the evapotranspiration zone that exists immediately below the land surface, infiltrating waters will start to collect various naturally occurring minerals like the major ion minerals and metals listed in this report. As water moves along its flow path and over time, groundwater will increase in total dissolved solids. Water actively moving through zones will flush these zones of minerals resulting in a lower residual TDS of the water due to a lack of available minerals; however, slow moving and less active groundwaters will increase in total dissolved solids.

The source of the groundwaters observed in this report appear to be meteoric in nature or precipitation based and not connate water or interstitial formational water. All the collected samples contained high silica and sodium minerals which are representatives of exposure to igneous geology. Volcanic glass shards are listed as a prevalent constituent in most of the formations surrounding the Alamito Creek area. This volcanic glass is easily dissolved, and diagenetic silicates and calcites replace the shards.

Based on the isotopic profile of the sampled waters, the Flowing Wells and the MOFN Wells share a significantly different isotopic signature compared to the springs, creek pools, and shallow water wells indicating a significant temporal or source differential.

Precipitation based groundwaters come into contact with surface soils where they collect  $HCO_3^-$  created from  $CO_2$  derived from the soil zone or limestones or dolomites.  $HCO_3^-$  is the dominate mineral in shallow, lower TDS groundwaters. Over time and mixing  $HCO_3^-$  becomes dominated by sulfate and chloride. The  $HCO_3^-$  concentrations in the Flowing Wells and the MOFN Wells contained lower ratios of  $HCO_3^-$  compared to the springs, creek pools, and shallow water wells. The lower ratio of  $HCO_3^-$  in the Flowing Wells and MOFN Wells indicate potentially a longer residence time and distance traveled since the time of initial infiltration.

Potassium and magnesium minerals were present in most of the springs, creek pools, and shallow wells, while iron minerals were found in all the springs and creek pools, except PR-DXS3. Magnesium and iron were absent in the Flowing Wells and the MOFN Wells. A review of the basic mineral constituents from the surrounding formation yields sufficient data to assist in the identification of the source of some of the mineral constituents of the sampled waters.

Those waters rich in bicarbonate, calcium, sodium, silica, potassium, magnesium, and iron are most likely associated with waters from overland flows and shallow groundwater zones most likely attributed to the Petan or Jones basalts which are most likely the source of the magnesium and contact to the Tascotal formation is most likely the source of the iron. The abundance of bicarbonate is most likely associated with exposure to near surface soils abundant in CO<sub>2</sub>. While sodium, calcium, and silica are prevalent in most igneous rocks.



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

Samples PR-IBS1 and PR-DXW1 are most likely associated with groundwaters outflowing from the Petan Basalt on the western side of the Alamito Creek, while PR-IBS2, PR-DXS1, and PR-DXS2 are most likely associated with outflow from up channel deposits of the Petan Basalt and Mitchell Mesa Rhyolite with some contact with potential overland or near surface flow of the Tascotal formation.

Samples PR-DXW5 and PR-DXS3, with the lack of iron minerals, appears to potentially be associated with the Michell Mesa Rhyolite. PR-DXS3 is most likely associated with potential out flow of shallow water associated with incised near channel deposits of the Mitchell Mesa Rhyolite through faults on the eastern side of Alamito Creek.

Samples PR-000498, PR-00384, PR-SKRMAW1, and PR-AVAW1, which make up the "Flowing Wells" group, appear to be deep circulating groundwaters potentially associated with either the Mitchell Mesa Rhyolite or the rhyolitic tuff of the Duff Formation and not immediately connected to shallow surface flows. The groundwater samples from the PR-MOFNWW1 and PR-MOFNWW2 wells indicate waters of similar origin to the Flowing Wells further to the south. These wells are significantly shallower and over four-hundred feet higher in surface elevation than the flowing wells. Isotopically, the PR-MOFN wells have a very similar profile, which indicates the source water is potentially of similar origin. The geochemical makeup is similar to the Flowing Wells with some variation in associated mineral chemistry. Potentially, the PR-MOFN Wells are most likely completed into the underlying Mitchell Mesa Rhyolite below the Tascotal Formation with potential interconnecting pathways through long northwesterly trending faults that may intercept some of the original source waters of the Flowing Wells.

The association of the groundwater chemistry and potential pathways to specific formations are based on the general assumption of basic igneous rock geochemical composition, and not on any site-specific rock analysis other than the analysis made in referenced reports and information associated with the various listed formations. There are significant variations in the geo-chemical composition of the sampled groundwater groups that lead to the conclusion of differing source waters. However, no potentiometric analysis has been made to establish pressure head or potential static water level comparisons due to a lack of both spatial and level information. In addition, no subsurface information is available for comparative analysis of formation thickness or composition within the Alamito Creek area due to a lack of creditable comparative data.

The geo-chemical analysis of the groundwater samples and subsequent conclusions are based on a relatively small quantity of analytes in comparison to the large spatial distribution of the sampled waters and is not to be considered as conclusive evidence of definitive isolation; therefore, these conclusions, which are based on the variations in sampled water chemistry, are subject to change based on relevant or new data that may become available in the future.



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

#### Limitations

Straub Corporation has prepared this investigation to the best of its ability. No other warranty, expressed or implied, is made or intended. Straub Corporation has examined and relied upon documents referenced in this investigation and has relied on oral statements and data submitted by certain individuals. Some information included in this investigation has been provided to Straub Corporation by the Presidio County Underground Water Conservation District and Dixon Water Foundation. Straub Corporation has not conducted an independent examination of the facts contained in referenced materials and statements. We have presumed the genuineness of the documents and that the information provided in documents or statements is true and accurate. This report is not intended to be an endorsement for any specific product or company. Straub Corporation has prepared this document in a professional manner. Straub Corporation also notes that the facts and conditions referenced in this report may change over time and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this document's preparation.

This document has been prepared for the benefit of the Presidio County Underground Water Conservation District and Dixon Water Foundation and their constituents. The information contained in this document including all exhibits and figures may not be used by any other party without the express prior written consent of Straub Corporation.

Prepared by,

Raymond L Straub Jr., P.G.

And

Jill M Johnson MS



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

#### **References**

- Barnes, V. E. (1992). Geologic Atlas of Texas. Austin, Texas: Bureau of Economic Geology, The University of Texas at Austin.
- Bowen, G. (2021). *OIPC: The Online Isotopes in Precipitation Calculator*. Retrieved from Waterisotopes.org: http://wateriso.utah.edu/waterisotopes/index.html
- Carpenter, M. B., & Keane, C. M. (2016). *The Geoscience Handbook 2016, AGI Data Sheets, Fifth Edition.* Alexandria, VA: American Geosciences Institute.
- Davis, M. E. (1961). Bulletin 6110, Ground-Water Reconnaissance of the Marfa Area, Presidio County, Texas. U.S. Geological Survey.
- Domenico, P. A., & Schwartz, F. W. (1998). *Physical and chemical hydrogeology*. New York, New York: John Wiley & Sons.
- Drever, J. I. (1988). *The Geochemistry of Natural Waters*. Englewood Cliffs, New Jersey: Prentice Hall Inc.
- Faure, G. (1998). *Principles and Applications of Geochemistry, Second Edition*. Upper Saddle River, New Jersey: Prentice Hall.
- Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Englewood Cliffs, New Jersey: Prentice-Hall, Inc.
- Healy, R. W. (2012). Estimating Groundwater Recharge. Cambridge, UK: Cambridge University Press.
- Muehlberger, W. R. (1980). *Texas Lineament Revisited*. Austin, Texas: New Mexico Geological Society Guidebook 31st Field Conference.
- U.S. Geological Survey. (2002). PHREEQCI —A Graphical User Interface to the. Denver, Colorado: U.S. Geological Survey.
- Walton, A. (1979). *Guidebook 19, Sedimentary and Diagenesis of the Tascotal Formatin: A Brief Summary.* Austin, Texas: Bureau of Economic Geology.



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

#### Isotope Plot Interpretation Chart





P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

#### Stable Isotope Data

| Stable Isotope (  | Geosciences Facility                        |                       |          |         |
|-------------------|---------------------------------------------|-----------------------|----------|---------|
| Texas A&M Univ    | rersity                                     |                       |          |         |
| Natural Liquid H  | 20 Analyses of $\delta^{18}$ O and $\delta$ | D                     |          |         |
| Picarro L2120-i C | RDS, A0211 vaporization m                   | nodule                |          |         |
|                   |                                             |                       |          |         |
| Sample            | Additional Description                      | $\delta^{18}$ O VSMOW | δD VSMOW | Comment |
| PR-000384         | Straub                                      | -8.48                 | -57.91   |         |
| PR-000384         | Straub                                      | -8.59                 | -58.66   |         |
|                   |                                             |                       |          |         |
| PR-000492         | Straub                                      | -8.45                 | -58.66   |         |
| PR-000492         | Straub                                      | -8.66                 | -59.29   |         |
|                   |                                             |                       |          |         |
| PR-AVAW1          | Straub                                      | -8.48                 | -58.52   |         |
| PR-AVAW1          | Straub                                      | -8.62                 | -58.85   |         |
|                   |                                             |                       |          |         |
| PR-DXS1           | Straub                                      | -6.84                 | -47.17   |         |
| PR-DXS1           | Straub                                      | -6.81                 | -47.54   |         |
|                   |                                             |                       |          |         |
| PR-DXS2           | Straub                                      | -7.18                 | -48.61   |         |
| PR-DXS2           | Straub                                      | -7.43                 | -49.72   |         |
|                   |                                             |                       |          |         |
| PR-DXS3           | Straub                                      | -7.15                 | -47.43   |         |
| PR-DXS3           | Straub                                      | -7.67                 | -52.06   |         |
|                   |                                             |                       |          |         |
| PR-DXW5           | Straub                                      | -7.56                 | -49.80   |         |
| PR-DXW5           | Straub                                      | -7.50                 | -50.19   |         |
|                   |                                             |                       |          |         |
| PR-DXW1           | Straub                                      | -7.15                 | -47.82   |         |
| PR-DXW1           | Straub                                      | -7.21                 | -48.31   |         |
|                   |                                             |                       |          |         |
| PR-IBS1           | Straub                                      | -7.19                 | -49.26   |         |
| PR-IBS1           | Straub                                      | -7.29                 | -50.57   |         |
|                   |                                             |                       |          |         |
| PR-IBS2           | Straub                                      | -6.07                 | -44.85   |         |
| PR-IBS2           | Straub                                      | -6.73                 | -47.38   |         |
|                   |                                             |                       |          |         |
| PR-MOFNWW1        | Straub                                      | -8.61                 | -59.89   |         |
| PR-MOFNWW1        | Straub                                      | -8.56                 | -59.08   |         |
|                   |                                             |                       |          |         |
| PR-SKRMAW1        | Straub                                      | -8.82                 | -57.98   |         |
| PR-SKRMAW1        | Straub                                      | -8.49                 | -57.19   |         |
|                   |                                             |                       |          |         |
| PR-MOFNWW2        | Straub                                      | -8.72                 | -58.65   |         |
| PR-MOFNWW2        | Straub                                      | -8.25                 | -56.81   |         |



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

#### Oxygen-18 / Deuterium Isotope Plot





**STRAUB CORPORATION - Geoscience** 

P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

### Laboratory Results

|                                     |            | Certific         | ate of Analv     | sis Summar       | v 688601         |                     |                  |
|-------------------------------------|------------|------------------|------------------|------------------|------------------|---------------------|------------------|
| Seurofins Environment Testing Xanco |            |                  | Straub Corpora   | tion, Stanton, T | X                |                     |                  |
|                                     |            |                  | Project Name: A  | lamito Creek Pro | q                |                     |                  |
| Project Id:                         |            |                  |                  |                  | Date Received i  | n Lab: Fri 02.19.20 | 21 14:04         |
| Contact: Raymond Straub             |            |                  |                  |                  | Repor            | t Date: 02.26.2021  | 19:15            |
| Project Location: Presidio County   |            |                  |                  |                  | Project Ma       | mager: John Builes  |                  |
|                                     | Lab Id:    | 688601-001       | 688601-002       | 688601-003       | 688601-004       | 688601-005          | 688601-006       |
| Later Damage                        | Field Id:  | PR-000384        | PR-SKRMAW1       | PR-AVAW1         | PR-DXS1          | PR-DXS2             | PR-DXS3          |
| naisanhay sistimity                 | Depth:     | 600              | 300              |                  | 1                | 1                   | 1                |
|                                     | Matrix:    | GROUND WATER        | GROUND WATER     |
|                                     | Sampled:   | 02.15.2021 13:00 | 02.15.2021 15:50 | 02.15.2021 16:52 | 02.16.2021 12:15 | 02.16.2021 14:31    | 02.16.2021 17:07 |
| Alkalinity by SM2320B               | Extracted: | 02.23.2021 11:25 | 02.23.2021 11:25 | 02.23.2021 11:25 | 02.23.2021 11:25 | 02.23.2021 11:25    | 02.23.2021 11:25 |
| SUB: T104704215-20-39               | Analyzed:  | 02.23.2021 12:01 | 02.23.2021 12:13 | 02.23.2021 12:20 | 02.23.2021 12:28 | 02.23.2021 12:35    | 02.23.2021 12:42 |
|                                     | Units/RL:  | mg/L RL             | mg/L RL          |
| Alkalinity, Bicarbonate (as CaCO3)  |            | 194 4.00         | 185 4.00         | 192 4.00         | 462 4.00         | 367 4.00            | 322 4.00         |
| Inorganic Anions by EPA 300/300.1   | Extracted: | 02.19.2021 15:15 | 02.19.2021 15:15 | 02.19.2021 15:15 | 02.19.2021 15:15 | 02.19.2021 15:15    | 02.19.2021 15:15 |
|                                     | Analyzed:  | 02.19.2021 21:15 | 02.19.2021 21:24 | 02.19.2021 21:32 | 02.19.2021 21:41 | 02.19.2021 21:50    | 02.19.2021 21:58 |
|                                     | Units/RL:  | mg/L RL             | mg/L RL          |
| Bromide                             |            | 0.488 XF 0.100   | 0.582 0.100      | 0.447 0.100      | 0.758 0.100      | 0.394 0.100         | 0.418 0.100      |
| Chloride                            |            | 16.3 X 0.500     | 23.7 0.500       | 16.2 0.500       | 38.3 0.500       | 19.8 0.500          | 12.0 0.500       |
| Fluoride                            |            | 1.89 XF 0.100    | 2.83 0.100       | 1.93 0.100       | 1.74 0.100       | 2.70 0.100          | 1.98 0.100       |
| Nitrate as N                        |            | 2.65 K 0.100     | 4.21 K 0.100     | 2.57 K 0.100     | 0.129 K 0.100    | <0.100 0.100        | 0.413 K 0.100    |
| Sulfate                             |            | 35.2 0.500       | 45.7 0.500       | 34.9 0.500       | 132 0.500        | 39.9 0.500          | 49.8 0.500       |
| Recoverable Metals by EPA 200.8     | Extracted: | 02.24.2021 11:00 | 02.24.2021 11:00 | 02.24.2021 11:00 | 02.24.2021 11:00 | 02.24.2021 11:00    | 02.24.2021 11:00 |
| SUB: T104704215-20-39               | Analyzed:  | 02.25.2021 02:13 | 02.25.2021 02:16 | 02.25.2021 02:19 | 02.25.2021 02:22 | 02.25.2021 02:25    | 02.25.2021 02:28 |
|                                     | Units/RL:  | mg/L RL             | mg/L RL          |
| Arsenic                             |            | 0.00820 0.00400  | 0.00450 0.00400  | 0.00906 0.00400  | <0.00400 0.00400 | 0.00491 0.00400     | <0.00400 0.00400 |
| Silver                              |            | <0.00200 0.00200 | <0.00200 0.00200 | <0.00200 0.00200 | <0.00200 0.00200 | <0.00200 0.00200    | <0.00200 0.00200 |
| Uranium                             |            | 0.0247 0.00100   | 0.0392 0.00100   | 0.0200 0.00100   | 0.0831 0.00100   | 0.0183 0.00100      | 0.0366 0.00100   |
|                                     |            |                  |                  |                  |                  |                     |                  |

Final 1.001

Page 1 of 50

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

|                                   |            |                  | Project Name: A  | lamito Creek Pro | q                |                      |                  |   |
|-----------------------------------|------------|------------------|------------------|------------------|------------------|----------------------|------------------|---|
| Project Id:                       |            |                  |                  |                  | Date Received i  | n Lab: Fri 02.19.20  | 21 14:04         |   |
| Contact: Raymond Straub           |            |                  |                  |                  | Repor            | t Date: 02.26.2021 1 | 9:15             |   |
| Project Location: Presidio County |            |                  |                  |                  | Project Ma       | nager: John Builes   |                  |   |
|                                   | Lab Id:    | 688601-001       | 688601-002       | 688601-003       | 688601-004       | 688601-005           | 688601-006       |   |
| Laboration Description A          | Field Id:  | PR-000384        | PR-SKRMAW1       | PR-AVAW1         | PR-DXS1          | PR-DXS2              | PR-DXS3          |   |
| valuested                         | Depth:     | 600              | 300              |                  | 1                | 1                    | 1                |   |
|                                   | Matrix:    | GROUND WATER         | GROUND WATER     |   |
|                                   | Sampled:   | 02.15.2021 13:00 | 02.15.2021 15:50 | 02.15.2021 16:52 | 02.16.2021 12:15 | 02.16.2021 14:31     | 02.16.2021 17:07 |   |
| Recoverable Metals per ICP by EPA | Extracted: | 02.23.2021 08:30 | 02.23.2021 08:30 | 02.23.2021 08:30 | 02.23.2021 08:30 | 02.23.2021 08:30     | 02.23.2021 08:30 |   |
| 200.7                             | Analyzed:  | 02.24.2021 21:55 | 02.24.2021 22:00 | 02.24.2021 22:04 | 02.24.2021 22:08 | 02.24.2021 22:12     | 02.24.2021 22:16 |   |
| SUB: T104704215-20-39             | Units/RL:  | mg/L RL              | mg/L RL          |   |
| Calcium                           | -          | 1.78 0.200       | 2.56 0.200       | 1.45 0.200       | 78.0 D 10.0      | 57.1 0.200           | 50.8 0.200       | 0 |
| Iron                              |            | <0.200 0.200     | <0.200 0.200     | <0.200 0.200     | 0.786 0.200      | 1.03 0.200           | <0.200 0.200     | 0 |
| Magnesium                         |            | <0.200 0.200     | <0.200 0.200     | <0.200 0.200     | 10.7 0.200       | 4.48 0.200           | 1.97 0.200       | 0 |
| Potassium                         |            | 0.649 0.500      | <0.500 0.500     | 0.566 0.500      | 5.39 0.500       | 1.58 0.500           | 2.26 0.500       | 0 |
| Silica                            |            | 24.2 1.07        | 26.3 1.07        | 24.0 1.07        | 50.4 1.07        | 54.7 1.07            | 42.2 1.07        |   |
| Sodium                            |            | 121 0.500        | 130 0.500        | 120 0.500        | 175 0.500        | 119 0.500            | 115 0.500        | 0 |
| Specific Conductance @25C by      | Extracted: |                  |                  |                  |                  |                      |                  |   |
| SM2510B                           | Analyzed:  | 02.22.2021 17:06 | 02.22.2021 17:06 | 02.22.2021 17:06 | 02.22.2021 17:06 | 02.22.2021 17:06     | 02.22.2021 17:06 |   |
| SUB: T104704215-20-39             | Units/RL:  | umhos/cm RL          | umhos/cm RL      |   |
| Conductivity                      | -          | 568 10.0         | 644 10.0         | 580 10.0         | 1290 10.0        | 863 10.0             | 799 10.0         | 0 |
| TDS by SM2540C                    | Extracted: |                  |                  |                  |                  |                      |                  |   |
| SUB: T104704215-20-39             | Analyzed:  | 02.22.2021 14:34 | 02.22.2021 14:34 | 02.22.2021 14:34 | 02.22.2021 14:34 | 02.22.2021 14:34     | 02.22.2021 14:34 |   |
|                                   | Units/RL   | mg/L RL              | mg/L RL          |   |
| Total Dissolved Solids            |            | 280 5.00         | 318 5.00         | 297 5.00         | 704 5.00         | 431 5.00             | 423 5.00         | 0 |
| pH by SM4500-H                    | Extracted: |                  |                  |                  |                  |                      |                  |   |
| SUB: T104704215-20-39             | Analyzed:  | 02.25.2021 17:02 | 02.25.2021 17:02 | 02.25.2021 17:02 | 02.25.2021 17:02 | 02.25.2021 17:02     | 02.25.2021 17:02 |   |
|                                   | Units/RL   | Deg C RL             | Deg C RL         |   |
| Temperature                       |            | 19.9 K               | 20.0 K           |   |
| pH by SM4500-H                    | Extracted: |                  |                  |                  |                  |                      |                  |   |
| SUB: T104704215-20-39             | Analyzed:  | 02.25.2021 17:02 | 02.25.2021 17:02 | 02.25.2021 17:02 | 02.25.2021 17:02 | 02.25.2021 17:02     | 02.25.2021 17:02 |   |
|                                   | Units/RL:  | SU RL                | SU RL            |   |
| Hu                                |            | 8.52 K           | 8.65 K           | 8.79 K           | 8.13 K           | 7.95 K               | 8.10 K           |   |

Final 1.001

Page 2 of 50

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

BRL - Below Reporting Limit

Certificate of Analysis Summary 688601 Straub Corporation, Stanton, TX


P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

| mary 688601                        | ton, TX                      |
|------------------------------------|------------------------------|
| <b>Certificate of Analysis Sum</b> | Straub Corporation, Stan     |
|                                    | Environment Testing<br>Xenco |

🔅 eurofins

Straub Corporation, Stanton, TX Project Name: Alamito Creek Prod

Project Id:

Raymond Straub Presidio County Contact:

Date Received in Lab: Fri 02.19.2021 14:04 Report Date: 02.26.2021 19:15

| Project Location: Presidio County  |            |                  |                  |                  | Project Ma       | nnager: Jonn Builes |                  |
|------------------------------------|------------|------------------|------------------|------------------|------------------|---------------------|------------------|
|                                    | Lab Id:    | 688601-007       | 688601-008       | 688601-009       | 688601-010       | 688601-011          | 688601-012       |
| Australia Domartad                 | Field Id:  | PR-M0FNWW1       | PR-M0FNWW2       | PR-IBS1          | PR-IBS2          | PR-000492           | PR-DXW5          |
| naisanhay sistimur                 | Depth:     | 300              | 300              | 19               | 2                |                     | 65.              |
|                                    | Matrix:    | GROUND WATER        | GROUND WATER     |
|                                    | Sampled:   | 02.17.2021 10:59 | 02.17.2021 12:10 | 02.17.2021 14:08 | 02.17.2021 17:17 | 02.17.2021 18:40    | 02.18.2021 15:05 |
| Alkalinity by SM2320B              | Extracted: | 02.23.2021 11:25 | 02.23.2021 11:25 | 02.23.2021 11:25 | 02.23.2021 11:25 | 02.23.2021 11:25    | 02.23.2021 11:25 |
| SUB: T104704215-20-39              | Analyzed:  | 02.23.2021 13:00 | 02.23.2021 13:06 | 02.23.2021 13:12 | 02.23.2021 13:20 | 02.23.2021 13:26    | 02.23.2021 13:39 |
|                                    | Units/RL:  | mg/L RL             | mg/L RL          |
| Alkalinity, Bicarbonate (as CaCO3) |            | 220 4.00         | 230 4.00         | 232 4.00         | 368 4.00         | 178 4.00            | 293 4.00         |
| Inorganic Anions by EPA 300/300.1  | Extracted: | 02.19.2021 15:15 | 02.19.2021 15:15 | 02.19.2021 15:15 | 02.19.2021 15:15 | 02.19.2021 15:15    | 02.19.2021 15:15 |
|                                    | Analyzed:  | 02.19.2021 22:07 | 02.19.2021 22:16 | 02.19.2021 18:38 | 02.19.2021 16:28 | 02.19.2021 16:37    | 02.19.2021 16:45 |
|                                    | Units/RL   | mg/L RL             | mg/L RL          |
| Bromide                            |            | 0.442 0.100      | 0.323 0.100      | 0.322 0.100      | <0.100 0.100     | 0.353 0.100         | 0.470 0.100      |
| Chloride                           |            | 14.7 0.500       | 9.15 0.500       | 7.24 0.500       | 12.3 0.500       | 12.1 X 0.500        | 17.2 0.500       |
| Fluoride                           |            | 0.937 0.100      | 1.04 0.100       | 0.839 0.100      | 1.12 0.100       | 2.52 XF 0.100       | 1.71 0.100       |
| Nitrate as N                       |            | 2.06 K 0.100     | 1.41 K 0.100     | 1.11 K 0.100     | <0.100 0.100     | 1.75 0.100          | 1.12 0.100       |
| Sulfate                            |            | 44.0 0.500       | 19.2 0.500       | 9.67 0.500       | 27.5 0.500       | 24.4 X 0.500        | 43.4 0.500       |
| Recoverable Metals by EPA 200.8    | Extracted: | 02.24.2021 11:00 | 02.24.2021 11:00 | 02.24.2021 11:00 | 02.24.2021 11:00 | 02.24.2021 11:00    | 02.24.2021 11:00 |
| SUB: T104704215-20-39              | Analyzed:  | 02.25.2021 02:31 | 02.25.2021 02:34 | 02.25.2021 02:37 | 02.25.2021 02:40 | 02.25.2021 02:51    | 02.25.2021 02:55 |
|                                    | Units/RL:  | mg/L RL             | mg/L RL          |
| Arsenic                            |            | <0.00400 0.00400 | <0.00400 0.00400 | 0.00492 0.00400  | 0.00445 0.00400  | 0.00881 0.00400     | <0.00400 0.00400 |
| Silver                             |            | <0.00200 0.00200 | <0.00200 0.00200 | <0.00200 0.00200 | <0.00200 0.00200 | <0.00200 0.00200    | <0.00200 0.00200 |
| Uranium                            |            | 0.0513 0.00100   | 0.0410 0.00100   | 0.0112 0.00100   | 0.0221 0.00100   | 0.0167 0.00100      | 0.0338 0.00100   |
|                                    |            |                  |                  |                  |                  |                     |                  |

Final 1.001

Page 3 of 50

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

36



Certificate of Analysis Summary 688601 Straub Corporation, Stanton, TX

Control Environment Testing Xenco

# **STRAUB CORPORATION - Geoscience**

P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

|                                          |            |                  | Project Name: A  | lamito Creek Pro | q                |                      |                  |
|------------------------------------------|------------|------------------|------------------|------------------|------------------|----------------------|------------------|
| Project Id:                              |            |                  |                  |                  | Date Received i  | n Lab: Fri 02.19.202 | 1 14:04          |
| Contact: Raymond Straub                  |            |                  |                  |                  | Repor            | t Date: 02.26.2021 1 | 9:15             |
| Project Location: Presidio County        |            |                  |                  |                  | Project Ma       | mager: John Builes   |                  |
|                                          | Lab Id:    | 688601-007       | 688601-008       | 688601-009       | 688601-010       | 688601-011           | 688601-012       |
| Description Description                  | Field Id:  | PR-M0FNWW1       | PR-M0FNWW2       | PR-IBS1          | PR-IBS2          | PR-000492            | PR-DXW5          |
| naisanhay sisting                        | Depth:     | 300              | 300              | 19               | 2                |                      | 65.              |
|                                          | Matrix     | GROUND WATER         | GROUND WATER     |
|                                          | Sampled:   | 02.17.2021 10:59 | 02.17.2021 12:10 | 02.17.2021 14:08 | 02.17.2021 17:17 | 02.17.2021 18:40     | 02.18.2021 15:05 |
| <b>Recoverable Metals per ICP by EPA</b> | Extracted: | 02.23.2021 08:30 | 02.23.2021 08:30 | 02.23.2021 08:30 | 02.23.2021 08:30 | 02.23.2021 08:30     | 02.23.2021 08:30 |
| 200.7                                    | Analyzed:  | 02.24.2021 22:21 | 02.24.2021 22:33 | 02.24.2021 22:37 | 02.24.2021 22:42 | 02.24.2021 22:50     | 02.24.2021 22:54 |
| SUB: T104704215-20-39                    | Units/RL:  | mg/L RL              | mg/L RL          |
| Calcium                                  |            | 10.8 0.200       | 9.11 0.200       | 48.8 0.200       | 60.9 0.200       | 0.829 0.200          | 31.1 0.20        |
| Iron                                     |            | <0.200 0.200     | <0.200 0.200     | <0.200 0.200     | 0.221 0.200      | <0.200 0.200         | <0.200 0.20      |
| Magnesium                                |            | <0.200 0.200     | <0.200 0.200     | 3.28 0.200       | 4.72 0.200       | <0.200 0.200         | 0.248 0.20(      |
| Potassium                                |            | <0.500 0.500     | 0.517 0.500      | 5.08 0.500       | 3.86 0.500       | <0.500 0.500         | 1.11 0.50        |
| Silica                                   |            | 35.4 1.07        | 33.1 1.07        | 49.5 1.07        | 42.4 1.07        | 25.9 1.07            | 39.6 1.07        |
| Sodium                                   |            | 118 0.500        | 113 0.500        | 54.0 0.500       | 106 0.500        | 120 0.500            | 131 0.50         |
| Specific Conductance @25C by             | Extracted: |                  |                  |                  |                  |                      |                  |
| SM2510B                                  | Analyzed:  | 02.22.2021 17:06 | 02.22.2021 17:06 | 02.22.2021 17:06 | 02.22.2021 17:06 | 02.22.2021 17:06     | 02.22.2021 17:06 |
| SUB: T104704215-20-39                    | Units/RL:  | umhos/cm RL          | umhos/cm RL      |
| Conductivity                             |            | 614 10.0         | 543 10.0         | 502 10.0         | 810 10.0         | 561 10.0             | 753 10.0         |
| TDS by SM2540C                           | Extracted: |                  |                  |                  |                  |                      |                  |
| SUB: T104704215-20-39                    | Analyzed:  | 02.22.2021 14:34 | 02.22.2021 14:34 | 02.22.2021 14:34 | 02.22.2021 14:34 | 02.22.2021 14:34     | 02.22.2021 14:34 |
|                                          | Units/RL:  | mg/L RL              | mg/L RL          |
| Total Dissolved Solids                   |            | 372 5.00         | 366 5.00         | 231 5.00         | 431 5.00         | 338 5.00             | 331 5.00         |
| pH by SM4500-H                           | Extracted: |                  |                  |                  |                  |                      |                  |
| SUB: T104704215-20-39                    | Analyzed:  | 02.25.2021 17:02 | 02.25.2021 17:02 | 02.25.2021 17:02 | 02.25.2021 17:02 | 02.25.2021 17:02     | 02.25.2021 17:02 |
|                                          | Units/RL:  | Deg C RL             | Deg C RL         |
| Temperature                              |            | 20.0 K           | 19.9 K           | 20.0 K           | 20.0 K           | 20.1 K               | 20.0 K           |
| pH by SM4500-H                           | Extracted: |                  |                  |                  |                  |                      |                  |
| SUB: T104704215-20-39                    | Analyzed:  | 02.25.2021 17:02 | 02.25.2021 17:02 | 02.25.2021 17:02 | 02.25.2021 17:02 | 02.25.2021 17:02     | 02.25.2021 17:02 |
|                                          | Units/RL:  | SU RL                | SU RL            |
| Hd                                       |            | 8.49 K           | 8.59 K           | 8.33 K           | 8.47 K           | 9.18 K               | 8.50 K           |

Page 4 of 50

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

BRL - Below Reporting Limit

Final 1.001



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

Date Received in Lab: Fri 02.19.2021 14:04 Report Date: 02.26.2021 19:15 Project Manager: John Builes Straub Corporation, Stanton, TX Project Name: Alamito Creek Prod Raymond Straub Presidio County Environment Testing Xenco Project Location:

Certificate of Analysis Summary 688601

🔅 eurofins

Project Id: Contact:

|                                    | Lab Id:    | 688601-013       |            |
|------------------------------------|------------|------------------|------------|
|                                    | Field Id:  | PR-DXW1          |            |
| naisanbay sisting                  | Depth:     | 42               |            |
|                                    | Matrix:    | GROUND WATER     |            |
|                                    | Sampled:   | 02.18.2021 16:06 | ;          |
| Alkalinity by SM2320B              | Extracted: | 02.23.2021 11:25 |            |
| SUB: T104704215-20-39              | Analyzed:  | 02.23.2021 13.47 |            |
|                                    | Units/RL:  | mg/L RL          |            |
| Alkalinity, Bicarbonate (as CaCO3) |            | 315 4.00         |            |
| Inorganic Anions by EPA 300/300.1  | Extracted: | 02.19.2021 15:15 |            |
|                                    | Analyzed:  | 02.19.2021 16:54 |            |
|                                    | Units/RL:  | mg/L RL          |            |
| Bromide                            |            | 0.323 0.100      |            |
| Chloride                           | 6          | 6.50 0.500       | 0          |
| Fluoride                           |            | 0.938 0.100      |            |
| Nitrate as N                       | 2<br>      | 0.234 0.100      |            |
| Sulfate                            |            | 14.2 0.500       |            |
| Recoverable Metals by EPA 200.8    | Extracted: | 02.24.2021 11:00 |            |
| SUB: T104704215-20-39              | Analyzed:  | 02.25.2021 02:57 |            |
|                                    | Units/RL:  | mg/L RL          |            |
| Arsenic                            |            | <0.00400 0.00400 |            |
| Silver                             |            | <0.00200 0.00200 | <i>6</i> 3 |
| Itranum                            |            | 0.00665 0.00100  | Ū.         |

Final 1.001

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Page 5 of 50



# Certificate of Analysis Summary 688601 Straub Corporation, Stanton, TX

Project Name: Alamito Creek Prod

Date Received in Lab: Fri 02.19.2021 14:04

...... F Project Id: Cont Proje

| Contact: Raymond Straub<br>Project Location: Presidio County |             |                  |    | Repoi<br>Project M | rt Date: 02.2<br>anager: Johr | 6.2021       |
|--------------------------------------------------------------|-------------|------------------|----|--------------------|-------------------------------|--------------|
| lever nor anom                                               |             |                  |    | 1Vafarr            |                               | - Indeninger |
|                                                              | Lab Id:     | 688601-013       |    |                    |                               |              |
| Analycis Domoctod                                            | Field Id:   | PR-DXW1          |    |                    |                               |              |
| noiconhow sichmur                                            | Depth:      | 42               |    |                    |                               |              |
|                                                              | Matrix:     | GROUND WATER     |    |                    |                               |              |
|                                                              | Sampled:    | 02.18.2021 16:06 |    |                    |                               |              |
| Recoverable Metals per ICP by EPA                            | Extracted:  | 02.23.2021 08:30 |    |                    |                               |              |
| 200.7                                                        | Analyzed:   | 02.24.2021 22:59 |    |                    |                               |              |
| SUB: T104704215-20-39                                        | Units/RL:   | mg/L RL          |    |                    |                               |              |
| Calcium                                                      |             | 71.3 0.200       |    |                    |                               |              |
| IOI                                                          |             | <0.200 0.200     |    |                    |                               |              |
| Magnesium                                                    |             | 17.1 0.200       |    |                    |                               |              |
| otassium                                                     | <u>8</u> _3 | 1.11 0.500       |    |                    |                               | 2            |
| silica                                                       |             | 57.2 1.07        |    |                    |                               |              |
| odium                                                        |             | 40.7 0.500       |    |                    |                               |              |
| Specific Conductance @25C by                                 | Extracted:  |                  |    |                    |                               |              |
| SM2510B                                                      | Analyzed:   | 02.22.2021 17:06 |    |                    |                               |              |
| SUB: T104704215-20-39                                        | Units/RL:   | umhos/cm RL      |    |                    |                               |              |
| Conductivity                                                 |             | 657 10.0         |    |                    |                               |              |
| TDS by SM2540C                                               | Extracted:  |                  |    |                    |                               |              |
| SUB: T104704215-20-39                                        | Analyzed:   | 02.22.2021 14:34 |    |                    |                               |              |
|                                                              | Units/RL:   | mg/L RL          |    |                    |                               |              |
| Fotal Dissolved Solids                                       | 8 R         | 289 5.00         |    |                    |                               |              |
| pH by SM4500-H                                               | Extracted:  |                  |    |                    |                               |              |
| SUB: T104704215-20-39                                        | Analyzed:   | 02.25.2021 17:02 |    |                    |                               |              |
|                                                              | Units/RL:   | Deg C RL         |    |                    |                               |              |
| emperature                                                   | 12<br>      | 20.2 K           |    |                    |                               |              |
| pH by SM4500-H                                               | Extracted:  |                  |    |                    |                               |              |
| SUB: T104704215-20-39                                        | Analyzed:   | 02.25.2021 17:02 |    |                    |                               |              |
|                                                              | Units/RL:   | SU RL            | ж. |                    |                               | 0            |
| H                                                            |             | X 66 Z           |    |                    |                               |              |

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Final 1.001

Page 6 of 50

**STRAUB CORPORATION - Geoscience** 

P.O. Box 192, Stanton, Texas 79782 (432) 756-3489





P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

Piper Plot Interpretation Chart



(Domenico & Schwartz, 1998)



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

#### Water Quality Piper Plot - All Sample Locations





P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

<u>Water Quality Piper Plot – Flowing Wells Sample Locations</u>





P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

<u>Water Quality Piper Plot – Dixon Springs Sample Locations</u>





P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

#### <u>Water Quality Piper Plot – Dixon Wells Sample Locations</u>





P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

<u>Water Quality Piper Plot – IBS Springs Sample Locations</u>





P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

#### Water Quality Piper Plot - MOFN Wells Sample Locations





P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

Water Quality Durov Diagram - All Sample Locations





P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

#### Gibbs Ratio Analysis





P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

#### Chloride/Sulfate Ratio Plot





P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

#### HCO3-/TDS Ratio Plot





P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

#### <u>SO4<sup>2-</sup> / TDS Ratio Plot</u>





P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

#### Silicate Mineral Plot









P.O. Box 192, Stanton, Texas 79782 (432) 756-3489





P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

#### Saturation Indices Plots

Flowing Wells





**STRAUB CORPORATION - Geoscience** 









**STRAUB CORPORATION - Geoscience** 





**STRAUB CORPORATION - Geoscience** 

MOFN Wells





**STRAUB CORPORATION - Geoscience** 





P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

Dixon Wells





P.O. Box 192, Stanton, Texas 79782 (432) 756-3489





P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

Springs/Creek





P.O. Box 192, Stanton, Texas 79782 (432) 756-3489





**STRAUB CORPORATION - Geoscience** 







**STRAUB CORPORATION** - Geoscience







**STRAUB CORPORATION -** Geoscience







**STRAUB CORPORATION** - Geoscience






**STRAUB CORPORATION** - Geoscience

P.O. Box 192, Stanton, Texas 79782 (432) 756-3489







P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

## Purge and Sampling Table

|           | Presidio County UWCD Alamito Creek Project - Purge and Sampling Table |                      |          |              |              |                |
|-----------|-----------------------------------------------------------------------|----------------------|----------|--------------|--------------|----------------|
|           |                                                                       |                      |          | Specific     |              |                |
| Date      | Time                                                                  | Location             | Temp (C) | Conductivity | Purge Rate   | Volume/Comment |
|           |                                                                       |                      |          | (uS/cm)      | -            |                |
| 2/15/2021 | 12:40                                                                 | PR-000384 (flowing)  | 26.3     | 534          | 1.7 (GPM)    | 5 (Constant)   |
|           |                                                                       |                      | 27.8     | 508          |              | 10             |
|           |                                                                       |                      | 27.8     | 504          |              | 15             |
|           | 13:00                                                                 | Sampled              |          |              |              | 20             |
|           |                                                                       |                      |          |              |              |                |
| 2/15/2021 | 15:41                                                                 | PR-SKRMAW1 (flowing) | 27.7     | 588          | 20           | Constant       |
|           | 15:50                                                                 | Sampled              |          |              |              |                |
|           |                                                                       |                      |          |              |              |                |
| 2/15/2021 | 16:33                                                                 | PR-AVAW1 (flowing)   | 27.1     | 335          | 6            | Constant       |
|           | 16:52                                                                 | Sampled              |          |              |              |                |
|           |                                                                       |                      |          |              |              |                |
| 2/16/2021 | 11:37                                                                 | PR-DXS1 (creek)      |          |              | 218 (ml/min) |                |
|           | 11:41                                                                 |                      | 9.6      | 1147         |              |                |
|           | 11:44                                                                 |                      | 9        | 1157         |              |                |
|           | 11:48                                                                 |                      | 8.4      | 1165         |              |                |
|           | 11:51                                                                 |                      | 8.4      | 1189         |              |                |
|           | 11:53                                                                 |                      | 8.3      | 1192         |              |                |
|           | 11:56                                                                 |                      | 8.4      | 1143         |              |                |
|           | 11:59                                                                 |                      | 8.5      | 1170         |              |                |
|           | 12:15                                                                 | Sampled              |          |              |              |                |
|           |                                                                       |                      |          |              |              |                |
| 2/16/2021 | 14:03                                                                 | PR-DXS2 (creek)      |          |              | 217 (ml/min) |                |
|           | 14:07                                                                 |                      | 18.6     | 768          |              |                |
|           | 14:09                                                                 |                      | 17.9     | 774          |              |                |
|           | 14:12                                                                 |                      | 17.8     | 766          |              |                |
|           | 14:14                                                                 |                      | 17.7     | 768          |              |                |
|           | 14:16                                                                 |                      | 17.5     | 773          |              |                |
|           | 14:18                                                                 |                      | 17.6     | 783          |              |                |
|           | 14:20                                                                 |                      | 17.5     | 777          |              |                |
|           | 14:22                                                                 |                      | 17.5     | 778          |              |                |
|           | 14:31                                                                 | Sampled              |          |              |              |                |
|           |                                                                       |                      |          |              |              |                |
| 2/16/2021 | 16:35                                                                 | PR-DXS3 (creek)      |          |              | 217 (ml/min) |                |
|           | 16:42                                                                 |                      | 16.6     | 691          |              |                |
|           | 16:44                                                                 |                      | 16.4     | 698          |              |                |
|           | 16:46                                                                 |                      | 16.2     | 698          |              |                |
|           | 16:49                                                                 |                      | 16.2     | 710          |              |                |
|           | 16:51                                                                 |                      | 16.2     | 707          |              |                |
|           | 16:53                                                                 |                      | 16.3     | 712          |              |                |
|           | 16:57                                                                 |                      | 16.3     | 713          |              |                |
|           | 17:07                                                                 | Sampled              |          |              |              |                |
|           |                                                                       |                      |          |              |              |                |
|           |                                                                       |                      |          |              |              |                |



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

| Presidio County UWCD Alamito Creek Project - Purge and Sampling Table |       |                     |      |     |              |                     |
|-----------------------------------------------------------------------|-------|---------------------|------|-----|--------------|---------------------|
| 2/17/2021                                                             | 10:25 | PR-MOFNWW1 (well)   |      |     | 12 (GPM)     |                     |
|                                                                       | 10:30 |                     | 22.1 | 583 |              |                     |
|                                                                       | 10:33 |                     | 21.4 | 578 |              |                     |
|                                                                       | 10:43 |                     | 21.1 | 581 |              |                     |
|                                                                       | 10:45 |                     | 22.2 | 575 |              |                     |
|                                                                       | 10:47 |                     | 22.2 | 574 |              |                     |
|                                                                       | 10:49 |                     | 22.5 | 568 |              |                     |
|                                                                       | 10:51 |                     | 22.4 | 572 |              |                     |
|                                                                       | 10:59 | Sampled             |      |     |              |                     |
|                                                                       |       |                     |      |     |              |                     |
| 2/17/2021                                                             | 11:52 | PR-MOFNWW2 (well)   | 22   | 526 | ~20 (GPM)    | Pumping Solar       |
|                                                                       | 11:54 |                     | 24.2 | 513 |              |                     |
|                                                                       | 11:56 |                     | 24.8 | 513 |              |                     |
|                                                                       | 11:58 |                     | 25.3 | 513 |              |                     |
|                                                                       | 12:01 |                     | 25   | 513 |              |                     |
|                                                                       | 12:10 | Sampled             |      |     |              |                     |
|                                                                       |       |                     |      |     |              |                     |
| 2/17/2021                                                             | 13:48 | PR-IBS1 (spring)    | 22.3 | 485 | 65-70 (GPM)  | Solar pumped spring |
|                                                                       | 13:51 |                     | 23.3 | 478 |              |                     |
|                                                                       | 13:53 |                     | 23.6 | 481 |              |                     |
|                                                                       | 13:55 |                     | 23.8 | 485 |              |                     |
|                                                                       | 13:58 |                     | 23.8 | 485 |              |                     |
|                                                                       | 14:08 | Sampled             |      |     |              |                     |
|                                                                       |       |                     |      |     |              |                     |
| 2/17/2021                                                             | 16:37 | PR-IBS2 (creek)     |      |     | 150 (ml/min) |                     |
|                                                                       | 16:49 |                     | 12.6 | 722 |              |                     |
|                                                                       | 16:55 |                     | 13   |     |              |                     |
|                                                                       | 16:59 |                     | 12.7 |     |              |                     |
|                                                                       | 17:03 |                     | 12.7 |     |              |                     |
|                                                                       | 17:06 |                     | 12.6 |     |              |                     |
|                                                                       | 17:17 | Sampled             |      |     |              |                     |
|                                                                       |       |                     |      |     |              |                     |
| 2/17/2021                                                             | 18:33 | PR-000492 (flowing) | 28.9 | 535 | 30 (GPM)     | Constant            |
|                                                                       | 18:35 |                     | 30.7 | 530 |              |                     |
|                                                                       | 18:37 |                     | 31.2 | 525 |              |                     |
|                                                                       | 18:38 |                     | 31.2 | 524 |              |                     |
|                                                                       | 18:40 | Sampled             |      |     |              |                     |
|                                                                       |       |                     |      |     |              |                     |
| 2/18/2021                                                             | 14:32 | PR-DXW5 (well)      |      |     | 7.5 (GPM)    | Electric Pump       |
|                                                                       | 14:36 |                     | 21.8 | 650 |              |                     |
|                                                                       | 14:42 |                     | 23.3 | 963 |              |                     |
|                                                                       | 14:47 |                     | 23.3 | 728 |              |                     |
|                                                                       | 14:54 |                     | 23.5 | 700 |              |                     |
|                                                                       | 15:04 |                     | 23.2 | 692 |              |                     |
|                                                                       | 15:05 | Sampled             |      |     |              |                     |
|                                                                       |       |                     |      |     |              |                     |
| 2/18/2021                                                             | 15:53 | PR-DXW1 (well)      |      |     | ~8 (GPM)     | Electric Pump       |
|                                                                       | 15:56 |                     | 19.5 | 608 |              |                     |
|                                                                       | 16:00 |                     | 21.1 | 604 |              |                     |
|                                                                       | 16:05 |                     | 21.4 | 604 |              |                     |
|                                                                       | 16:06 | Sampled             |      |     |              |                     |



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

Pictorial Log



La Viuda Peak RM 169, Presidio County, Texas



San Jacinto Mountain, La Viuda Peak, and Transqulla Canyon Mesa, Casa Piedra, Presidio County, Texas



Sample Point PR-000384



Sample Point PR-SKRMAW1



Sample Point PR-AVAW1



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489







Road entering Dixon Water Foundation

Sample Point PR-DXS1

Sample Point PR-DXS2



Sample Point PR-DXS3



Sample Point PR-MOFNWW1



Sample Point PR-MOFNWW2



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489



Sample Point PR-IBS1





Fault scarp on Alamito Creek near Sample Point PR-IBS2

Cottonwood Tree on Alamito Creek near Sample Point PR-IBS2



Sample Point PR-IBS2



Sample Point PR-000492



Sample Point PR-DXW5



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489



Sample Point PR-DXW1





Perdiz Conglomerate on Railway Cut

Railroad Trestle over Alamito Creek near fault scarp



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489



Sunrise near Alamito Creek at Casa Piedra, Presidio County, Texas



P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

Full Laboratory Report



**Straub Corporation, Stanton, TX** 

Project Name: Alamito Creek Prod

Project Id:

Contact: Raymond Straub

Project Location: Presidio County

 Date Received in Lab:
 Fri 02.19.2021 14:04

 Report Date:
 02.26.2021 19:15

Project Manager: John Builes

|                                        | Lab Id:    | 688601-0   | 001                                    | 688601-0   | 02                                | 688601-0   | 003              | 688601-0   | 004              | 688601-0   | 005     | 688601-0   | )06     |
|----------------------------------------|------------|------------|----------------------------------------|------------|-----------------------------------|------------|------------------|------------|------------------|------------|---------|------------|---------|
| Analysis Requested                     | Field Id:  | PR-0003    | 384                                    | PR-SKRM    | AW1                               | PR-AVAW    | V1               | PR-DXS     | 1                | PR-DXS2    | 2       | PR-DXS3    |         |
| Anulysis Kequesieu                     | Depth:     | 600        |                                        | 300        |                                   |            |                  | 1          |                  | 1          |         | 1          |         |
|                                        | Matrix:    | GROUND W   | VATER                                  | GROUND W   | ATER                              | GROUND W   | VATER            | GROUND V   | VATER            | GROUND W   | ATER    | GROUND W   | /ATER   |
|                                        | Sampled:   | 02.15.2021 | 13:00                                  | 02.15.2021 | 15:50                             | 02.15.2021 | 16:52            | 02.16.2021 | 12:15            | 02.16.2021 | 14:31   | 02.16.2021 | 17:07   |
| Alkalinity by SM2320B                  | Extracted: | 02.23.2021 | 11:25                                  | 02.23.2021 | 11:25                             | 02.23.2021 | 11:25            | 02.23.2021 | 11:25            | 02.23.2021 | 11:25   | 02.23.2021 | 11:25   |
| SUB: T104704215-20-39                  | Analyzed:  | 02.23.2021 | 12:01                                  | 02.23.2021 | 12:13                             | 02.23.2021 | 12:20            | 02.23.2021 | 12:28            | 02.23.2021 | 12:35   | 02.23.2021 | 12:42   |
|                                        | Units/RL:  | mg/L       | RL                                     | mg/L       | RL                                | mg/L       | RL               | mg/L       | RL               | mg/L       | RL      | mg/L       | RL      |
| Alkalinity, Bicarbonate (as CaCO3)     |            | 194        | 4.00                                   | 185        | 4.00                              | 192        | 4.00             | 462        | 4.00             | 367        | 4.00    | 322        | 4.00    |
| Inorganic Anions by EPA 300/300.1      | Extracted: | 02.19.2021 | 15:15                                  | 02.19.2021 | 15:15                             | 02.19.2021 | 15:15            | 02.19.2021 | 15:15            | 02.19.2021 | 15:15   | 02.19.2021 | 15:15   |
|                                        | Analyzed:  | 02.19.2021 | 02.19.2021 21:15 02.19.2021 21:24 02.1 |            | 02.19.2021 21:32 02.19.2021 21:41 |            | 02.19.2021 21:50 |            | 02.19.2021 21:58 |            |         |            |         |
|                                        | Units/RL:  | mg/L       | RL                                     | mg/L       | RL                                | mg/L       | RL               | mg/L       | RL               | mg/L       | RL      | mg/L       | RL      |
| Bromide                                |            | 0.488 XF   | 0.100                                  | 0.582      | 0.100                             | 0.447      | 0.100            | 0.758      | 0.100            | 0.394      | 0.100   | 0.418      | 0.100   |
| Chloride                               |            | 16.3 X     | 0.500                                  | 23.7       | 0.500                             | 16.2       | 0.500            | 38.3       | 0.500            | 19.8       | 0.500   | 12.0       | 0.500   |
| Fluoride                               |            | 1.89 XF    | 0.100                                  | 2.83       | 0.100                             | 1.93       | 0.100            | 1.74       | 0.100            | 2.70       | 0.100   | 1.98       | 0.100   |
| Nitrate as N                           |            | 2.65 K     | 0.100                                  | 4.21 K     | 0.100                             | 2.57 K     | 0.100            | 0.129 K    | 0.100            | < 0.100    | 0.100   | 0.413 K    | 0.100   |
| Sulfate                                |            | 35.2       | 0.500                                  | 45.7       | 0.500                             | 34.9       | 0.500            | 132        | 0.500            | 39.9       | 0.500   | 49.8       | 0.500   |
| <b>Recoverable Metals by EPA 200.8</b> | Extracted: | 02.24.2021 | 11:00                                  | 02.24.2021 | 11:00                             | 02.24.2021 | 11:00            | 02.24.2021 | 11:00            | 02.24.2021 | 11:00   | 02.24.2021 | 11:00   |
| SUB: T104704215-20-39                  | Analyzed:  | 02.25.2021 | 02:13                                  | 02.25.2021 | 02:16                             | 02.25.2021 | 02:19            | 02.25.2021 | 02:22            | 02.25.2021 | 02:25   | 02.25.2021 | 02:28   |
|                                        | Units/RL:  | mg/L       | RL                                     | mg/L       | RL                                | mg/L       | RL               | mg/L       | RL               | mg/L       | RL      | mg/L       | RL      |
| Arsenic                                |            | 0.00820    | 0.00400                                | 0.00450    | 0.00400                           | 0.00906    | 0.00400          | < 0.00400  | 0.00400          | 0.00491    | 0.00400 | < 0.00400  | 0.00400 |
| Silver                                 |            | < 0.00200  | 0.00200                                | < 0.00200  | 0.00200                           | < 0.00200  | 0.00200          | < 0.00200  | 0.00200          | < 0.00200  | 0.00200 | < 0.00200  | 0.00200 |
| Uranium                                |            | 0.0247     | 0.00100                                | 0.0392     | 0.00100                           | 0.0200     | 0.00100          | 0.0831     | 0.00100          | 0.0183     | 0.00100 | 0.0366     | 0.00100 |

BRL - Below Reporting Limit

Ap



Straub Corporation, Stanton, TX

Project Name: Alamito Creek Prod

Project Id:

Contact: Raymond Straub

Project Location: Presidio County

 Date Received in Lab:
 Fri 02.19.2021 14:04

 Report Date:
 02.26.2021 19:15

 Project Manager:
 John Builes

Lab Id: 688601-001 688601-002 688601-003 688601-004 688601-005 688601-006 Field Id: PR-000384 PR-SKRMAW1 PR-AVAW1 PR-DXS1 PR-DXS2 PR-DXS3 Analysis Requested 600 Depth: 300 1 1 1 Matrix: GROUND WATER GROUND WATER GROUND WATER GROUND WATER GROUND WATER GROUND WATER 02.15.2021 13:00 02.15.2021 15:50 02.15.2021 16:52 Sampled: 02.16.2021 12:15 02.16.2021 14:31 02.16.2021 17:07 **Recoverable Metals per ICP by EPA** 02.23.2021 08:30 02.23.2021 08:30 02.23.2021 08:30 02.23.2021 08:30 02.23.2021 08:30 02.23.2021 08:30 Extracted: 200.7 Analyzed: 02.24.2021 21:55 02.24.2021 22:00 02.24.2021 22:04 02.24.2021 22:08 02.24.2021 22:12 02.24.2021 22:16 SUB: T104704215-20-39 mg/L RL mg/L RL mg/L RL mg/L RL mg/L RL mg/L RL Units/RL: 0.200 78.0 D 0.200 1.78 0.200 2.56 0.200 1.45 57.1 0.200 50.8 Calcium 10.0 < 0.200 0.200 < 0.200 0.200 < 0.200 0.200 0.786 0.200 0.200 < 0.200 0.200 Iron 1.03 < 0.200 0.200 < 0.200 0.200 < 0.200 0.200 0.200 4.48 0.200 1.97 0.200 Magnesium 10.7 0.649 0.500 < 0.500 0.500 0.566 0.500 0.500 0.500 0.500 Potassium 5.39 1.58 2.26 54.7 42.2 Silica 24.2 1.07 24.0 1.07 50.4 1.07 1.07 26.3 1.07 1.07 0.500 0.500 0.500 0.500 0.500 0.500 Sodium 121 130 120 175 119 115 Specific Conductance @25C by Extracted: SM2510B 02.22.2021 17:06 02.22.2021 17:06 02.22.2021 17:06 02.22.2021 17:06 Analyzed: 02.22.2021 17:06 02.22.2021 17:06 SUB: T104704215-20-39 Units/RL: umhos/cm RL umhos/cm RL umhos/cm RL umhos/cm RL umhos/cm RL umhos/cm RL Conductivity 568 10.0 644 10.0 580 10.0 1290 10.0 863 10.0 799 10.0 TDS by SM2540C Extracted: SUB: T104704215-20-39 02.22.2021 14:34 02.22.2021 14:34 02.22.2021 14:34 02.22.2021 14:34 02.22.2021 14:34 Analyzed: 02.22.2021 14:34 RL RL Units/RL: mg/L RL mg/L RL mg/L RL mg/L mg/L mg/L RL Total Dissolved Solids 280 5.00 318 5.00 297 5.00 704 5.00 431 5.00 423 5.00 pH by SM4500-H Extracted: SUB: T104704215-20-39 Analyzed: 02.25.2021 17:02 02.25.2021 17:02 02.25.2021 17:02 02.25.2021 17:02 02.25.2021 17:02 02.25.2021 17:02 Units/RL: Deg C RL 19.9 K 19.9 K 19.9 K 19.9 K 19.9 K 20.0 K Temperature pH by SM4500-H Extracted: SUB: T104704215-20-39 02.25.2021 17:02 02.25.2021 17:02 02.25.2021 17:02 Analyzed: 02.25.2021 17:02 02.25.2021 17:02 02.25.2021 17:02 Units/RL: SU RL SU RL SU RL SU RL SU RL SU RL 8.52 K 8.65 K 8.79 K 8.13 K 7.95 K 8.10 K pН

BRL - Below Reporting Limit



Straub Corporation, Stanton, TX

Project Name: Alamito Creek Prod

Project Id:

Contact: Raymond Straub

Project Location: Presidio County

 Date Received in Lab:
 Fri 02.19.2021 14:04

 Report Date:
 02.26.2021 19:15

 Project Manager:
 John Builes

Lab Id: 688601-007 688601-008 688601-009 688601-010 688601-011 688601-012 Field Id: PR-M0FNWW1 PR-M0FNWW2 PR-IBS1 PR-IBS2 PR-000492 PR-DXW5 Analysis Requested 2 Depth: 300 300 19 65. Matrix: GROUND WATER GROUND WATER GROUND WATER GROUND WATER GROUND WATER GROUND WATER Sampled: 02.17.2021 10:59 02.17.2021 12:10 02.17.2021 14:08 02.17.2021 17:17 02.17.2021 18:40 02.18.2021 15:05 Alkalinity by SM2320B 02.23.2021 11:25 02.23.2021 11:25 02.23.2021 11:25 02.23.2021 11:25 02.23.2021 11:25 02.23.2021 11:25 Extracted: SUB: T104704215-20-39 Analyzed: 02.23.2021 13:00 02.23.2021 13:06 02.23.2021 13:12 02.23.2021 13:20 02.23.2021 13:26 02.23.2021 13:39 mg/L RL mg/L RL mg/L RL mg/L RL mg/L RL mg/L RL Units/RL: Alkalinity, Bicarbonate (as CaCO3) 220 4.00 230 4.00 232 4.00 368 4.00 178 4.00 293 4.00 Inorganic Anions by EPA 300/300.1 02.19.2021 15:15 02.19.2021 15:15 02.19.2021 15:15 02.19.2021 15:15 02.19.2021 15:15 02.19.2021 15:15 Extracted: Analyzed: 02.19.2021 22:07 02.19.2021 22:16 02.19.2021 18:38 02.19.2021 16:28 02.19.2021 16:37 02.19.2021 16:45 mg/L RL mg/L RL mg/L RL mg/L RL mg/L RL mg/L RL Units/RL: 0.442 0.100 0.323 0.100 0.322 0.100 < 0.100 0.100 0.353 0.100 0.470 0.100 Bromide 0.500 0.500 0.500 0.500 12.1 X 0.500 0.500 Chloride 14.7 9.15 7.24 12.3 17.2 0.937 0.100 1.04 0.100 0.839 0.100 0.100 2.52 XF 0.100 1.71 0.100 Fluoride 1.12 2.06 K 1.41 K 0.100 1.11 K < 0.100 0.100 0.100 0.100 0.100 0.100 Nitrate as N 1.75 1.12 44.0 0.500 19.2 0.500 9.67 0.500 27.5 0.500 24.4 X 0.500 43.4 0.500 Sulfate **Recoverable Metals by EPA 200.8** 02.24.2021 11:00 Extracted: 02.24.2021 11:00 02.24.2021 11:00 02.24.2021 11:00 02.24.2021 11:00 02.24.2021 11:00 SUB: T104704215-20-39 Analyzed: 02.25.2021 02:31 02.25.2021 02:34 02.25.2021 02:37 02.25.2021 02:40 02.25.2021 02:51 02.25.2021 02:55 RL RL RL mg/L RL mg/L RL mg/L mg/L mg/L RL Units/RL: mg/L < 0.00400 0.00400 < 0.00400 0.00400 0.00492 0.00400 0.00445 0.00400 0.00881 0.00400 < 0.004000.00400 Arsenic 0.00200 0.00200 0.00200 < 0.00200 0.00200 < 0.00200 0.00200 < 0.00200 0.00200 < 0.00200 < 0.00200 < 0.00200 Silver 0.0221 0.0338 0.00100 Uranium 0.0513 0.00100 0.0410 0.00100 0.0112 0.00100 0.00100 0.0167 0.00100

BRL - Below Reporting Limit



Straub Corporation, Stanton, TX

Project Name: Alamito Creek Prod

Project Id:

Contact: Raymond Straub

Project Location: Presidio County

 Date Received in Lab:
 Fri 02.19.2021 14:04

 Report Date:
 02.26.2021 19:15

 Project Manager:
 John Builes

Lab Id: 688601-007 688601-008 688601-009 688601-010 688601-011 688601-012 Field Id: PR-M0FNWW1 PR-M0FNWW2 PR-IBS1 PR-IBS2 PR-000492 PR-DXW5 Analysis Requested 2 Depth: 300 300 19 65. Matrix: GROUND WATER GROUND WATER GROUND WATER GROUND WATER GROUND WATER GROUND WATER 02.17.2021 10:59 02.17.2021 12:10 Sampled: 02.17.2021 14:08 02.17.2021 17:17 02.17.2021 18:40 02.18.2021 15:05 **Recoverable Metals per ICP by EPA** 02.23.2021 08:30 02.23.2021 08:30 02.23.2021 08:30 02.23.2021 08:30 02.23.2021 08:30 02.23.2021 08:30 Extracted: 200.7 Analyzed: 02.24.2021 22:21 02.24.2021 22:33 02.24.2021 22:37 02.24.2021 22:42 02.24.2021 22:50 02.24.2021 22:54 SUB: T104704215-20-39 mg/L RL mg/L RL mg/L RL mg/L RL mg/L RL mg/L RL Units/RL: 0.200 0.829 0.200 0.200 9.11 0.200 48.8 60.9 0.200 0.200 31.1 Calcium 10.8 < 0.200 0.200 < 0.200 0.200 < 0.200 0.200 0.221 < 0.200 0.200 < 0.200 0.200 Iron 0.200 < 0.200 0.200 < 0.200 0.200 0.200 0.200 < 0.200 0.200 0.248 0.200 Magnesium 3.28 4.72 < 0.500 0.500 0.517 0.500 0.500 < 0.500 0.500 0.500 0.500 Potassium 5.08 3.86 1.11 42.4 39.6 Silica 1.07 33.1 49.5 1.07 1.07 25.9 1.07 1.07 35.4 1.07 0.500 0.500 0.500 0.500 0.500 0.500 Sodium 118 113 54.0 106 120 131 Specific Conductance @25C by Extracted: SM2510B 02.22.2021 17:06 02.22.2021 17:06 02.22.2021 17:06 02.22.2021 17:06 02.22.2021 17:06 02.22.2021 17:06 Analyzed: SUB: T104704215-20-39 Units/RL: umhos/cm RL umhos/cm RL umhos/cm RL umhos/cm RL umhos/cm RL umhos/cm RL Conductivity 614 10.0 543 10.0 502 10.0 810 10.0 561 10.0 753 10.0 TDS by SM2540C Extracted: SUB: T104704215-20-39 02.22.2021 14:34 02.22.2021 14:34 02.22.2021 14:34 02.22.2021 14:34 02.22.2021 14:34 Analyzed: 02.22.2021 14:34 mg/L RL RL Units/RL: mg/L RL mg/L RL mg/L RL mg/L mg/L RL Total Dissolved Solids 372 5.00 366 5.00 231 5.00 431 5.00 338 5.00 331 5.00 pH by SM4500-H Extracted: SUB: T104704215-20-39 Analyzed: 02.25.2021 17:02 02.25.2021 17:02 02.25.2021 17:02 02.25.2021 17:02 02.25.2021 17:02 02.25.2021 17:02 Units/RL: Deg C RL 20.0 K 19.9 K 20.0 K 20.0 K 20.1 K 20.0 K Temperature pH by SM4500-H Extracted: SUB: T104704215-20-39 02.25.2021 17:02 02.25.2021 17:02 02.25.2021 17:02 02.25.2021 17:02 Analyzed: 02.25.2021 17:02 02.25.2021 17:02 Units/RL: SU RL SU RL SU RL SU RL SU RL SU RL 8.49 K 8.59 K 8.33 K 8.47 K 9.18 K 8.50 K pН

BRL - Below Reporting Limit



**Project Id:** 

**Project Location:** 

**Contact:** 

Raymond Straub

Presidio County

## **Certificate of Analysis Summary 688601**

Straub Corporation, Stanton, TX

**Project Name: Alamito Creek Prod** 

Date Received in Lab: Fri 02.19.2021 14:04 **Report Date:** 02.26.2021 19:15 Project Manager: John Builes

Lab Id: 688601-013 Field Id: PR-DXW1 Analysis Requested 42 Depth: Matrix: GROUND WATER Sampled: 02.18.2021 16:06 Alkalinity by SM2320B 02.23.2021 11:25 Extracted: SUB: T104704215-20-39 Analyzed: 02.23.2021 13:47 Units/RL: mg/L RL Alkalinity, Bicarbonate (as CaCO3) 315 4.00 Inorganic Anions by EPA 300/300.1 02.19.2021 15:15 Extracted: Analyzed: 02.19.2021 16:54 Units/RL: mg/L RL 0.323 0.100 Bromide 0.500 Chloride 6.50 0.938 0.100 Fluoride 0.234 0.100 Nitrate as N Sulfate 14.2 0.500 **Recoverable Metals by EPA 200.8** Extracted: 02.24.2021 11:00 SUB: T104704215-20-39 Analyzed: 02.25.2021 02:57 RL Units/RL: mg/L < 0.004000.00400 Arsenic 0.00200 < 0.00200Silver Uranium 0.00665 0.00100

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico



**Project Id:** 

**Project Location:** 

**Contact:** 

Raymond Straub

Presidio County

## **Certificate of Analysis Summary 688601**

Straub Corporation, Stanton, TX

**Project Name: Alamito Creek Prod** 

Date Received in Lab: Fri 02.19.2021 14:04 **Report Date:** 02.26.2021 19:15 Project Manager: John Builes

Lab Id: 688601-013 Field Id: PR-DXW1 Analysis Requested 42 Depth: Matrix: GROUND WATER Sampled: 02.18.2021 16:06 **Recoverable Metals per ICP by EPA** Extracted: 02.23.2021 08:30 200.7 Analyzed: 02.24.2021 22:59 SUB: T104704215-20-39 mg/L RL Units/RL: 0.200 Calcium 71.3 < 0.200 0.200 Iron 0.200 Magnesium 17.1 0.500 Potassium 1.11 Silica 57.2 1.07 0.500 Sodium 40.7 Specific Conductance @25C by Extracted: **SM2510B** 02.22.2021 17:06 Analyzed: SUB: T104704215-20-39 Units/RL: umhos/cm RL Conductivity 657 10.0 TDS by SM2540C Extracted: SUB: T104704215-20-39 02.22.2021 14:34 Analyzed: RL Units/RL: mg/L Total Dissolved Solids 289 5.00 pH by SM4500-H Extracted: SUB: T104704215-20-39 Analyzed: 02.25.2021 17:02 Units/RL: Deg C RL 20.2 K Temperature pH by SM4500-H Extracted: SUB: T104704215-20-39 02.25.2021 17:02 Analyzed: Units/RL: SU RL 7.99 K pН

BRL - Below Reporting Limit



## **Analytical Report 688601**

for

## **Straub Corporation**

**Project Manager: Raymond Straub** 

**Alamito Creek Prod** 

#### 02.26.2021

Collected By: Client



1211 W. Florida Ave Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-20-38), Arizona (AZ0765), Florida (E871002-33), Louisiana (03054) Oklahoma (2020-014), North Carolina (681), Arkansas (20-035-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-20-26), Arizona (AZ0809)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-20-18) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-20-24) Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-20-21) Xenco-Carlsbad (LELAP): Louisiana (05092) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-20-8) Xenco-Tampa: Florida (E87429), North Carolina (483)



02.26.2021 Project Manager: **Raymond Straub Straub Corporation** P.O. Box 192 Stanton, TX 79782

Reference: Eurofins Xenco, LLC Report No(s): 688601 Alamito Creek Prod Project Address: Presidio County

#### **Raymond Straub**:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the Eurofins Xenco, LLC Report Number(s) 688601. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by Eurofins Xenco, LLC. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 688601 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting Eurofins Xenco, LLC to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

John Builes Project Manager

A Small Business and Minority Company



#### Sample Id

| PR-000384  |
|------------|
| PR-SKRMAW1 |
| PR-AVAW1   |
| PR-DXS1    |
| PR-DXS2    |
| PR-DXS3    |
| PR-M0FNWW1 |
| PR-M0FNWW2 |
| PR-IBS1    |
| PR-IBS2    |
| PR-000492  |
| PR-DXW5    |
| PR-DXW1    |

## Sample Cross Reference 688601

#### Straub Corporation, Stanton, TX

| Matrix | Date Collected   | Sample Depth | Lab Sample Id |
|--------|------------------|--------------|---------------|
| W      | 02.15.2021 13:00 | 600          | 688601-001    |
| W      | 02.15.2021 15:50 | 300          | 688601-002    |
| W      | 02.15.2021 16:52 |              | 688601-003    |
| W      | 02.16.2021 12:15 | 1            | 688601-004    |
| W      | 02.16.2021 14:31 | 1            | 688601-005    |
| W      | 02.16.2021 17:07 | 1            | 688601-006    |
| W      | 02.17.2021 10:59 | 300          | 688601-007    |
| W      | 02.17.2021 12:10 | 300          | 688601-008    |
| W      | 02.17.2021 14:08 | 19           | 688601-009    |
| W      | 02.17.2021 17:17 | 2            | 688601-010    |
| W      | 02.17.2021 18:40 |              | 688601-011    |
| W      | 02.18.2021 15:05 | 65.          | 688601-012    |
| W      | 02.18.2021 16:06 | 42           | 688601-013    |
|        |                  |              |               |



### **CASE NARRATIVE**

Client Name: Straub Corporation Project Name: Alamito Creek Prod

Project ID: Work Order Number(s): 688601 
 Report Date:
 02.26.2021

 Date Received:
 02.19.2021

#### Sample receipt non conformances and comments:

Out of hold was caused due to force majeure. Recent weather conditions associated with the winter storm affecting large parts of Texas resulted in laboratory closures and scheduling delays for our Stafford facility. As such the following sample(s) was prepared and/or analyzed outside holding time: 688601-001, 002, 003, 004, 005, 006, 007, 008, 009, 010, 011, 012, 013.

Sample receipt non conformances and comments per sample:

None

#### Analytical non conformances and comments:

Batch: LBA-3151337 Inorganic Anions by EPA 300/300.1

Bromide, Fluoride Relative Percent Difference (RPD) between matrix spike and duplicate were above quality control limits.

Samples in the analytical batch are: 688601-001, -002, -003, -004, -005, -006, -007, -008, -009, -010, -011, -012, -013

Lab Sample ID 688601-011 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Fluoride recovered below QC limits in the Matrix Spike Duplicate. Chloride recovered above QC limitsBromide recovered above QC limits in the Matrix Spike Duplicate. Fluoride, Sulfate recovered above QC limits in the Matrix Spike. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 688601-001, -002, -003, -004, -005, -006, -007, -008, -009, -010, -011, -012, -013. The Laboratory Control Sample for Chloride , Fluoride, Bromide, Sulfate is within laboratory Control Limits, therefore the data was accepted.



## Straub Corporation, Stanton, TX

| Sample Id:<br>Lab Sample Id | <b>PR-000384</b><br>: 688601-001 |            | Matrix:<br>Date Coll | Ground Water<br>ected: 02.15.2021 13:00 |       | Date Received:02.1<br>Sample Depth: 600 | 9.2021 14 | :04 |
|-----------------------------|----------------------------------|------------|----------------------|-----------------------------------------|-------|-----------------------------------------|-----------|-----|
| Analytical Me               | thod: Alkalinity by SM           | 2320B      |                      |                                         |       | Prep Method: SM2                        | .320P     |     |
| Tech:<br>Analyst:           | ALZ<br>ALZ                       |            | Date Prep            | o: 02.23.2021 11:25                     |       | % Moisture:                             | 20.20     |     |
| Seq Number:                 | 3151529                          |            |                      |                                         |       | SUD. 1104/04213-                        | 20-39     |     |
| Parameter                   |                                  | Cas Number | Result               | RL                                      | Units | Analysis Date                           | Flag      | Dil |
| Alkalinity, Bicarbo         | onate (as CaCO3)                 | 471-34-1   | 194                  | 4.00                                    | mg/L  | 02.23.2021 12:01                        |           | 1   |

| Analytical Me | ethod: Inorganic Anions | s by EPA 300/300.1 |           |                    |       | Prep Method: E300 | )P   |     |
|---------------|-------------------------|--------------------|-----------|--------------------|-------|-------------------|------|-----|
| Tech:         | CHE                     |                    |           |                    |       |                   |      |     |
| Analyst:      | CHE                     |                    | Date Prep | : 02.19.2021 15:15 |       | % Moisture:       |      |     |
| Seq Number:   | 3151337                 |                    |           |                    |       |                   |      |     |
| Parameter     |                         | Cas Number         | Result    | RL                 | Units | Analysis Date     | Flag | Dil |
| Bromide       |                         | 24959-67-9         | 0.488     | 0.100              | mg/L  | 02.19.2021 21:15  | XF   | 1   |
| Chloride      |                         | 16887-00-6         | 16.3      | 0.500              | mg/L  | 02.19.2021 21:15  | Х    | 1   |
| Fluoride      |                         | 16984-48-8         | 1.89      | 0.100              | mg/L  | 02.19.2021 21:15  | XF   | 1   |
| Nitrate as N  |                         | 14797-55-8         | 2.65      | 0.100              | mg/L  | 02.19.2021 21:15  | Κ    | 1   |
| Sulfate       |                         | 14808-79-8         | 35.2      | 0.500              | mg/L  | 02.19.2021 21:15  |      | 1   |

| Analytical Me          | thod: TDS by SM254 | 0C         |        |      |       |                  |        |     |
|------------------------|--------------------|------------|--------|------|-------|------------------|--------|-----|
| Tech:                  | DTN                |            |        |      |       |                  |        |     |
| Analyst:               | DTN                |            |        |      |       | % Moisture:      | 20.20  |     |
| Seq Number:            | 3151412            |            |        |      |       | SUB: 1104/04213- | -20-39 |     |
| Parameter              |                    | Cas Number | Result | RL   | Units | Analysis Date    | Flag   | Dil |
| <b>Total Dissolved</b> | Solids             | 1642222    | 280    | 5.00 | mg/L  | 02.22.2021 14:34 |        | 1   |

| Analytical M      | ethod: pH by SM4500-I | Н          |                                      |    |       |                  |       |     |
|-------------------|-----------------------|------------|--------------------------------------|----|-------|------------------|-------|-----|
| Tech:<br>Analyst: | ANP<br>ANP            |            | % Moisture:<br>SUB: T104704215-20-39 |    |       |                  |       |     |
| Seq Number:       | 3151797               |            |                                      |    |       | SUB: 1104/04215- | 20-39 |     |
| Parameter         |                       | Cas Number | Result                               | RL | Units | Analysis Date    | Flag  | Dil |
| pH                |                       | 12408-02-5 | 8.52                                 |    | SU    | 02.25.2021 17:02 | K     | 1   |
| Temperature       |                       | TEMP       | 19.9                                 |    | Deg C | 02.25.2021 17:02 | Κ     | 1   |



#### Straub Corporation, Stanton, TX

Alamito Creek Prod

| Sample Id:    | PR-000384              |                  | Matrix:   | Ground Water              |       | Date Received:02.1 | 9.2021 14: | 04  |
|---------------|------------------------|------------------|-----------|---------------------------|-------|--------------------|------------|-----|
| Lab Sample Id | l: 688601-001          |                  | Date Co   | llected: 02.15.2021 13:00 |       | Sample Depth: 600  |            |     |
| Analytical Me | thod: Recoverable Meta | als by EPA 200.8 |           |                           |       | Prep Method: E200  | ).8P       |     |
| Tech:         | MLI                    |                  |           |                           |       |                    |            |     |
| Analyst:      | DEP                    |                  | Date Pre  | p: 02.24.2021 11:00       |       | % Moisture:        | 20.20      |     |
| Seq Number:   | 3151703                |                  |           |                           |       | SUB. 1104/04213-   | 20-39      |     |
| Parameter     |                        | Cas Number       | Result    | RL                        | Units | Analysis Date      | Flag       | Dil |
| Arsenic       |                        | 7440-38-2        | 0.00820   | 0.00400                   | mg/L  | 02.25.2021 02:13   |            | 1   |
| Silver        |                        | 7440-22-4        | < 0.00200 | 0.00200                   | mg/L  | 02.25.2021 02:13   | U          | 1   |
| Uranium       |                        | 7440-61-1        | 0.0247    | 0.00100                   | mg/L  | 02.25.2021 02:13   |            | 1   |

Analytical Method: Recoverable Metals per ICP by EPA 200.7

MLI

Tech:

| Analyst:    | DEP     |            | Date Prep | o: 02.23 | 3.2021 08:30 | % Moisture:<br>SUB: T104704215- | 20-39 |     |
|-------------|---------|------------|-----------|----------|--------------|---------------------------------|-------|-----|
| Seq Number: | 3151710 |            |           |          |              | 565.1104704215                  | 20 37 |     |
| Parameter   |         | Cas Number | Result    | RL       | Units        | Analysis Date                   | Flag  | Dil |
| Calcium     |         | 7440-70-2  | 1.78      | 0.200    | mg/L         | 02.24.2021 21:55                |       | 1   |
| Iron        |         | 7439-89-6  | < 0.200   | 0.200    | mg/L         | 02.24.2021 21:55                | U     | 1   |
| Magnesium   |         | 7439-95-4  | < 0.200   | 0.200    | mg/L         | 02.24.2021 21:55                | U     | 1   |
| Potassium   |         | 7440-09-7  | 0.649     | 0.500    | mg/L         | 02.24.2021 21:55                |       | 1   |
| Silica      |         | 7631-86-9  | 24.2      | 1.07     | mg/L         | 02.24.2021 21:55                |       | 1   |
| Sodium      |         | 7440-23-5  | 121       | 0.500    | mg/L         | 02.24.2021 21:55                |       | 1   |
|             |         |            |           |          |              |                                 |       |     |

| Analytical Method:   | Specific Conductance | @25C by SM2510B       |
|----------------------|----------------------|-----------------------|
| i mary fieur method. | Specific Conductance | C 25 C 0 y 511125 102 |

| Conductivity |         | COND       | 568    | 10.0 | umhos/cm | 02.22.2021 17:06                |        | 1   |
|--------------|---------|------------|--------|------|----------|---------------------------------|--------|-----|
| Parameter    |         | Cas Number | Result | RL   | Units    | Analysis Date                   | Flag   | Dil |
| Seq Number:  | 3151442 |            |        |      |          | 30D. 1104704213                 | -20-37 |     |
| Analyst:     | ANP     |            |        |      |          | % Moisture:<br>SUB: T104704215. | 20-39  |     |
| Tech:        | ANP     |            |        |      |          |                                 |        |     |



## Straub Corporation, Stanton, TX

| Sample Id:<br>Lab Sample Id | <b>PR-SKRMAW1</b><br>l: 688601-002 |            | Matrix:<br>Date Col | Ground Water<br>lected: 02.15.2021 15:50 |       | Date Received:02.1<br>Sample Depth: 300 | 9.2021 14 | :04 |
|-----------------------------|------------------------------------|------------|---------------------|------------------------------------------|-------|-----------------------------------------|-----------|-----|
| Analytical Me               | thod: Alkalinity by SM             | 2320B      |                     |                                          |       | Prep Method: SM2                        | 320P      |     |
| Tech:                       | ALZ                                |            |                     |                                          |       | % Moisture:                             |           |     |
| Analyst:                    | ALZ                                |            | Date Pre            | p: 02.23.2021 11:25                      |       | SUB: T104704215-                        | 20-39     |     |
| Seq Number:                 | 3151529                            |            |                     |                                          |       | 565.1101/01215                          | 20 37     |     |
| Parameter                   |                                    | Cas Number | Result              | RL                                       | Units | Analysis Date                           | Flag      | Dil |
| Alkalinity, Bicarbo         | onate (as CaCO3)                   | 471-34-1   | 185                 | 4.00                                     | mg/L  | 02.23.2021 12:13                        |           | 1   |

| Analytical Me | thod: Inorganic Anions | by EPA 300/300.1 |            |                  |       | Prep Method: E300 | Р    |     |
|---------------|------------------------|------------------|------------|------------------|-------|-------------------|------|-----|
| Tech:         | CHE                    |                  |            |                  |       |                   |      |     |
| Analyst:      | CHE                    |                  | Date Prep: | 02.19.2021 15:15 |       | % Moisture:       |      |     |
| Seq Number:   | 3151337                |                  |            |                  |       |                   |      |     |
| Parameter     |                        | Cas Number       | Result     | RL               | Units | Analysis Date     | Flag | Dil |
| Bromide       |                        | 24959-67-9       | 0.582      | 0.100            | mg/L  | 02.19.2021 21:24  |      | 1   |
| Chloride      |                        | 16887-00-6       | 23.7       | 0.500            | mg/L  | 02.19.2021 21:24  |      | 1   |
| Fluoride      |                        | 16984-48-8       | 2.83       | 0.100            | mg/L  | 02.19.2021 21:24  |      | 1   |
| Nitrate as N  |                        | 14797-55-8       | 4.21       | 0.100            | mg/L  | 02.19.2021 21:24  | К    | 1   |
| Sulfate       |                        | 14808-79-8       | 45.7       | 0.500            | mg/L  | 02.19.2021 21:24  |      | 1   |

| Total Dissolved | otal Dissolved Solids |            | 318    | 5.00 | mg/L  | 02.22.2021 14:34               |       | 1   |
|-----------------|-----------------------|------------|--------|------|-------|--------------------------------|-------|-----|
| Parameter       |                       | Cas Number | Result | RL   | Units | Analysis Date                  | Flag  | Dil |
| Seq Number:     | 3151412               |            |        |      |       | SOD. 1104704215                | 20-37 |     |
| Analyst:        | DTN                   |            |        |      |       | % Moisture:<br>SUB: T104704215 | 20-30 |     |
| Tech:           | DTN                   |            |        |      |       |                                |       |     |
| Analytical Me   | ethod: TDS by         | SM2540C    |        |      |       |                                |       |     |

| Analytical Me | ethod: pH by SM4500-F | I          |        |    |                       |                  |       |     |  |
|---------------|-----------------------|------------|--------|----|-----------------------|------------------|-------|-----|--|
| Tech:         | ANP                   |            |        |    |                       |                  |       |     |  |
| Analyst:      | ANP                   |            |        |    |                       | % Moisture:      | 20.20 |     |  |
| Seq Number:   | 3151797               |            |        |    | SUB: T104704215-20-39 |                  |       |     |  |
| Parameter     |                       | Cas Number | Result | RL | Units                 | Analysis Date    | Flag  | Dil |  |
| pH            |                       | 12408-02-5 | 8.65   |    | SU                    | 02.25.2021 17:02 | K     | 1   |  |
| Temperature   |                       | TEMP       | 19.9   |    | Deg C                 | 02.25.2021 17:02 | Κ     | 1   |  |



#### Straub Corporation, Stanton, TX

Alamito Creek Prod

| Sample Id:    | PR-SKRMAW1             |                  | Matrix:   | Ground Water              |       | Date Received:02.1 | 9.2021 14 | :04 |  |
|---------------|------------------------|------------------|-----------|---------------------------|-------|--------------------|-----------|-----|--|
| Lab Sample Id | l: 688601-002          |                  | Date Co   | llected: 02.15.2021 15:50 |       | Sample Depth: 300  |           |     |  |
| Analytical Me | thod: Recoverable Meta | als by EPA 200.8 |           |                           |       | Prep Method: E200  | ).8P      |     |  |
| Tech:         | MLI                    |                  |           |                           |       |                    |           |     |  |
| Analyst:      | DEP                    |                  | Date Pre  | ep: 02.24.2021 11:00      |       | % Moisture:        | 20.20     |     |  |
| Seq Number:   | 3151703                |                  |           |                           |       | SOD. 1104/04213-   | 20-39     |     |  |
| Parameter     |                        | Cas Number       | Result    | RL                        | Units | Analysis Date      | Flag      | Dil |  |
| Arsenic       |                        | 7440-38-2        | 0.00450   | 0.00400                   | mg/L  | 02.25.2021 02:16   |           | 1   |  |
| Silver        |                        | 7440-22-4        | < 0.00200 | 0.00200                   | mg/L  | 02.25.2021 02:16   | U         | 1   |  |
| Uranium       |                        | 7440-61-1        | 0.0392    | 0.00100                   | mg/L  | 02.25.2021 02:16   |           | 1   |  |

Analytical Method: Recoverable Metals per ICP by EPA 200.7

MLI

Tech:

| Analyst: DEP |         |            | Date Prep: 02.23.2021 08:30 |       |       | % Moisture:<br>SUB: T104704215-20-39 |       |     |  |
|--------------|---------|------------|-----------------------------|-------|-------|--------------------------------------|-------|-----|--|
| Seq Number:  | 3151710 |            |                             |       |       | 505.1101/01215                       | 20 37 |     |  |
| Parameter    |         | Cas Number | Result                      | RL    | Units | Analysis Date                        | Flag  | Dil |  |
| Calcium      |         | 7440-70-2  | 2.56                        | 0.200 | mg/L  | 02.24.2021 22:00                     |       | 1   |  |
| Iron         |         | 7439-89-6  | < 0.200                     | 0.200 | mg/L  | 02.24.2021 22:00                     | U     | 1   |  |
| Magnesium    |         | 7439-95-4  | < 0.200                     | 0.200 | mg/L  | 02.24.2021 22:00                     | U     | 1   |  |
| Potassium    |         | 7440-09-7  | < 0.500                     | 0.500 | mg/L  | 02.24.2021 22:00                     | U     | 1   |  |
| Silica       |         | 7631-86-9  | 26.3                        | 1.07  | mg/L  | 02.24.2021 22:00                     |       | 1   |  |
| Sodium       |         | 7440-23-5  | 130                         | 0.500 | mg/L  | 02.24.2021 22:00                     |       | 1   |  |

| Analytical Method: | Specific Conductance | @25C by SM2510B |
|--------------------|----------------------|-----------------|
|--------------------|----------------------|-----------------|

| Tech:        | ANP            |            |        |      | (        | % Moisture:      |       |     |  |
|--------------|----------------|------------|--------|------|----------|------------------|-------|-----|--|
| Analyst:     | ANI<br>2151442 |            |        |      | 5        | SUB: T104704215- | 20-39 |     |  |
| Seq Number:  | 5151442        |            |        |      |          |                  |       |     |  |
| Parameter    |                | Cas Number | Result | RL   | Units    | Analysis Date    | Flag  | Dil |  |
| Conductivity |                | COND       | 644    | 10.0 | umhos/cm | 02.22.2021 17:06 |       | 1   |  |



## Straub Corporation, Stanton, TX

| Sample Id:<br>Lab Sample Id | <b>PR-AVAW1</b><br>: 688601-003 |            | Matrix:<br>Date Col | Ground Water<br>lected: 02.15.2021 16:52 |       | Date Received:02.19.2021 14:04 |       |     |  |
|-----------------------------|---------------------------------|------------|---------------------|------------------------------------------|-------|--------------------------------|-------|-----|--|
| Analytical Me               | thod: Alkalinity by SM          | I2320B     |                     |                                          |       | Prep Method: SM2               | 2320P |     |  |
| Tech:                       | ALZ                             |            |                     |                                          |       |                                |       |     |  |
| Analyst:                    | ALZ                             |            | Date Prep           | b: 02.23.2021 11:25                      |       | % Moisture:                    | 20.20 |     |  |
| Seq Number:                 | 3151529                         |            | -                   |                                          |       | SUB: 1104/04215-               | 20-39 |     |  |
| Parameter                   |                                 | Cas Number | Result              | RL                                       | Units | Analysis Date                  | Flag  | Dil |  |
| Alkalinity, Bicarbo         | onate (as CaCO3)                | 471-34-1   | 192                 | 4.00                                     | mg/L  | 02.23.2021 12:20               |       | 1   |  |

| Analytical Me | thod: Inorganic Anions | by EPA 300/300.1 |            |                  |       | Prep Method: E300 | Р    |     |
|---------------|------------------------|------------------|------------|------------------|-------|-------------------|------|-----|
| Tech:         | CHE                    |                  |            |                  |       | 0/ Moistures      |      |     |
| Analyst:      | CHE                    |                  | Date Prep: | 02.19.2021 15:15 |       | % Moisture:       |      |     |
| Seq Number:   | 3151337                |                  |            |                  |       |                   |      |     |
| Parameter     |                        | Cas Number       | Result     | RL               | Units | Analysis Date     | Flag | Dil |
| Bromide       |                        | 24959-67-9       | 0.447      | 0.100            | mg/L  | 02.19.2021 21:32  |      | 1   |
| Chloride      |                        | 16887-00-6       | 16.2       | 0.500            | mg/L  | 02.19.2021 21:32  |      | 1   |
| Fluoride      |                        | 16984-48-8       | 1.93       | 0.100            | mg/L  | 02.19.2021 21:32  |      | 1   |
| Nitrate as N  |                        | 14797-55-8       | 2.57       | 0.100            | mg/L  | 02.19.2021 21:32  | Κ    | 1   |
| Sulfate       |                        | 14808-79-8       | 34.9       | 0.500            | mg/L  | 02.19.2021 21:32  |      | 1   |

| Total Dissolved | Solids       | 16422     | 22     | 297    | 5.00 | mg/L  | 02.22.2021 14:34               |       | 1   |
|-----------------|--------------|-----------|--------|--------|------|-------|--------------------------------|-------|-----|
| Parameter       |              | Cas       | Number | Result | RL   | Units | Analysis Date                  | Flag  | Dil |
| Seq Number:     | 3151412      |           |        |        |      |       | 505.1104704215                 | 20-37 |     |
| Analyst:        | DTN          |           |        |        |      |       | % Moisture:<br>SUB: T104704215 | 20-30 |     |
| Tech:           | DTN          |           |        |        |      |       |                                |       |     |
| Analytical Me   | ethod: TDS b | y SM2540C |        |        |      |       |                                |       |     |

| Analytical M | ethod: pH by SM4500-I | H          |        |    |       |                   |       |     |
|--------------|-----------------------|------------|--------|----|-------|-------------------|-------|-----|
| Tech:        | ANP                   |            |        |    |       | 0/ <b>N f i</b> / |       |     |
| Analyst:     | ANP                   |            |        |    |       | % Moisture:       | 20.30 |     |
| Seq Number:  | 3151797               |            |        |    |       | SOD. 1104704213-  | 20-39 |     |
| Parameter    |                       | Cas Number | Result | RL | Units | Analysis Date     | Flag  | Dil |
| pН           |                       | 12408-02-5 | 8.79   |    | SU    | 02.25.2021 17:02  | K     | 1   |
| Temperature  |                       | TEMP       | 19.9   |    | Deg C | 02.25.2021 17:02  | Κ     | 1   |



#### Straub Corporation, Stanton, TX

Alamito Creek Prod

| Sample Id:    | PR-AVAW1               |                  | Matrix:   | Ground Water              |       | Date Received:02.1 | 9.2021 14 | :04 |
|---------------|------------------------|------------------|-----------|---------------------------|-------|--------------------|-----------|-----|
| Lab Sample Id | l: 688601-003          |                  | Date Co   | llected: 02.15.2021 16:52 |       |                    |           |     |
| Analytical Me | thod: Recoverable Meta | als by EPA 200.8 |           |                           |       | Prep Method: E200  | ).8P      |     |
| Tech:         | MLI                    |                  |           |                           |       |                    |           |     |
| Analyst:      | DEP                    |                  | Date Pre  | ep: 02.24.2021 11:00      |       | % Moisture:        | 20.30     |     |
| Seq Number:   | 3151703                |                  |           |                           |       | SUB. 1104/04213-   | 20-39     |     |
| Parameter     |                        | Cas Number       | Result    | RL                        | Units | Analysis Date      | Flag      | Dil |
| Arsenic       |                        | 7440-38-2        | 0.00906   | 0.00400                   | mg/L  | 02.25.2021 02:19   |           | 1   |
| Silver        |                        | 7440-22-4        | < 0.00200 | 0.00200                   | mg/L  | 02.25.2021 02:19   | U         | 1   |
| Uranium       |                        | 7440-61-1        | 0.0200    | 0.00100                   | mg/L  | 02.25.2021 02:19   |           | 1   |

Analytical Method: Recoverable Metals per ICP by EPA 200.7

MLI

Tech:

| Analyst:    | DEP     |            | Date Prep | : 02  | 2.23.2021 08:30 | % Moisture:<br>SUB: T104704215- | -20-39 |     |
|-------------|---------|------------|-----------|-------|-----------------|---------------------------------|--------|-----|
| Seq Number: | 3151710 |            |           |       |                 | 50211101101210                  | 20 07  |     |
| Parameter   |         | Cas Number | Result    | RL    | Units           | Analysis Date                   | Flag   | Dil |
| Calcium     |         | 7440-70-2  | 1.45      | 0.200 | mg/L            | 02.24.2021 22:04                |        | 1   |
| Iron        |         | 7439-89-6  | < 0.200   | 0.200 | mg/L            | 02.24.2021 22:04                | U      | 1   |
| Magnesium   |         | 7439-95-4  | < 0.200   | 0.200 | mg/L            | 02.24.2021 22:04                | U      | 1   |
| Potassium   |         | 7440-09-7  | 0.566     | 0.500 | mg/L            | 02.24.2021 22:04                |        | 1   |
| Silica      |         | 7631-86-9  | 24.0      | 1.07  | mg/L            | 02.24.2021 22:04                |        | 1   |
| Sodium      |         | 7440-23-5  | 120       | 0.500 | mg/L            | 02.24.2021 22:04                |        | 1   |
|             |         |            |           |       |                 |                                 |        |     |

| Analytical Method:     | Specific Conductance | @25C by SM2510B       |
|------------------------|----------------------|-----------------------|
| i mary fieur triethou. | Speemie Conductance  | C 25 C 0 y 511125 101 |

| Tech:        | ANP     |            |        |      |          |                  |        |     |
|--------------|---------|------------|--------|------|----------|------------------|--------|-----|
| Analyst:     | ANP     |            |        |      |          | % Moisture:      | 20.20  |     |
| Seq Number:  | 3151442 |            |        |      |          | SUB. 1104704215- | -20-39 |     |
| Parameter    |         | Cas Number | Result | RL   | Units    | Analysis Date    | Flag   | Dil |
| Conductivity |         | COND       | 580    | 10.0 | umhos/cm | 02.22.2021 17:06 |        | 1   |



## Straub Corporation, Stanton, TX

| Sample Id:<br>Lab Sample Id | <b>PR-DXS1</b><br>: 688601-004 |            | Matrix:<br>Date Col | Ground Water<br>ected: 02.16.2021 12:15 |       | Date Received:02.1<br>Sample Depth: 1 | 9.2021 14 | :04 |
|-----------------------------|--------------------------------|------------|---------------------|-----------------------------------------|-------|---------------------------------------|-----------|-----|
| Analytical Me               | thod: Alkalinity by SM         | 2320B      |                     |                                         |       | Prep Method: SM2                      | .320P     |     |
| Tech:<br>Analyst:           | ALZ<br>ALZ                     |            | Date Prep           | o: 02.23.2021 11:25                     |       | % Moisture:                           | 20.20     |     |
| Seq Number:                 | 3151529                        |            |                     |                                         |       | SUD: 1104/04213-                      | 20-39     |     |
| Parameter                   |                                | Cas Number | Result              | RL                                      | Units | Analysis Date                         | Flag      | Dil |
| Alkalinity, Bicarbo         | onate (as CaCO3)               | 471-34-1   | 462                 | 4.00                                    | mg/L  | 02.23.2021 12:28                      |           | 1   |

| Analytical Me | thod: Inorganic Anions | by EPA 300/300.1 |            |                  |       | Prep Method: E300 | Р    |     |
|---------------|------------------------|------------------|------------|------------------|-------|-------------------|------|-----|
| Tech:         | CHE                    |                  |            |                  |       | A/ 3.5. * .       |      |     |
| Analyst:      | CHE                    |                  | Date Prep: | 02.19.2021 15:15 |       | % Moisture:       |      |     |
| Seq Number:   | 3151337                |                  |            |                  |       |                   |      |     |
| Parameter     |                        | Cas Number       | Result     | RL               | Units | Analysis Date     | Flag | Dil |
| Bromide       |                        | 24959-67-9       | 0.758      | 0.100            | mg/L  | 02.19.2021 21:41  |      | 1   |
| Chloride      |                        | 16887-00-6       | 38.3       | 0.500            | mg/L  | 02.19.2021 21:41  |      | 1   |
| Fluoride      |                        | 16984-48-8       | 1.74       | 0.100            | mg/L  | 02.19.2021 21:41  |      | 1   |
| Nitrate as N  |                        | 14797-55-8       | 0.129      | 0.100            | mg/L  | 02.19.2021 21:41  | Κ    | 1   |
| Sulfate       |                        | 14808-79-8       | 132        | 0.500            | mg/L  | 02.19.2021 21:41  |      | 1   |

| Total Dissolved | Solids           | 1642222    | 704    | 5.00 | mg/L  | 02.22.2021 14:34               |        | 1   |
|-----------------|------------------|------------|--------|------|-------|--------------------------------|--------|-----|
| Parameter       |                  | Cas Number | Result | RL   | Units | Analysis Date                  | Flag   | Dil |
| Seq Number:     | 3151412          |            |        |      |       | SOD. 1104704215                | -20-37 |     |
| Analyst:        | DTN              |            |        |      |       | % Moisture:<br>SUB: T104704215 | 20-30  |     |
| Tech:           | DTN              |            |        |      |       |                                |        |     |
| Analytical Me   | ethod: TDS by SM | I2540C     |        |      |       |                                |        |     |

| Analytical M<br>Tech: | ethod: pH by SM<br>ANP | 4500-Н     |        |    |       |                                 |       |     |
|-----------------------|------------------------|------------|--------|----|-------|---------------------------------|-------|-----|
| Analyst:              | ANP                    |            |        |    |       | % Moisture:<br>SUB: T104704215- | 20-39 |     |
| Seq Number:           | 3151797                |            |        |    |       |                                 |       |     |
| Parameter             |                        | Cas Number | Result | RL | Units | Analysis Date                   | Flag  | Dil |
| pH                    |                        | 12408-02-5 | 8.13   |    | SU    | 02.25.2021 17:02                | K     | 1   |
| Temperature           |                        | TEMP       | 19.9   |    | Deg C | 02.25.2021 17:02                | Κ     | 1   |



#### Straub Corporation, Stanton, TX

Alamito Creek Prod

| Sample Id:    | PR-DXS1                |                  | Matrix:   | Ground Water              |       | Date Received:02.1 | 9.2021 14: | 04  |
|---------------|------------------------|------------------|-----------|---------------------------|-------|--------------------|------------|-----|
| Lab Sample Id | l: 688601-004          |                  | Date Col  | llected: 02.16.2021 12:15 |       | Sample Depth: 1    |            |     |
| Analytical Me | thod: Recoverable Meta | lls by EPA 200.8 |           |                           |       | Prep Method: E200  | ).8P       |     |
| Tech:         | MLI                    |                  |           |                           |       |                    |            |     |
| Analyst:      | DEP                    |                  | Date Pre  | p: 02.24.2021 11:00       |       | % Moisture:        | 20.20      |     |
| Seq Number:   | 3151703                |                  |           |                           |       | SUB. 1104704213-   | 20-39      |     |
| Parameter     |                        | Cas Number       | Result    | RL                        | Units | Analysis Date      | Flag       | Dil |
| Arsenic       |                        | 7440-38-2        | < 0.00400 | 0.00400                   | mg/L  | 02.25.2021 02:22   | U          | 1   |
| Silver        |                        | 7440-22-4        | < 0.00200 | 0.00200                   | mg/L  | 02.25.2021 02:22   | U          | 1   |
| Uranium       |                        | 7440-61-1        | 0.0831    | 0.00100                   | mg/L  | 02.25.2021 02:22   |            | 1   |

Analytical Method: Recoverable Metals per ICP by EPA 200.7

MLI

Tech:

| Analyst:    | DEP     |            | Date Pre | p: 0  | 2.23.2021 08:30 | % Moisture:<br>SUB: T104704215- | 20-39 |     |
|-------------|---------|------------|----------|-------|-----------------|---------------------------------|-------|-----|
| Seq Number: | 3151710 |            |          |       |                 | 505.1104/04215                  | 20 37 |     |
| Parameter   |         | Cas Number | Result   | RL    | Units           | Analysis Date                   | Flag  | Dil |
| Calcium     |         | 7440-70-2  | 78.0     | 10.0  | mg/L            | 02.24.2021 20:31                | D     | 50  |
| Iron        |         | 7439-89-6  | 0.786    | 0.200 | mg/L            | 02.24.2021 22:08                |       | 1   |
| Magnesium   |         | 7439-95-4  | 10.7     | 0.200 | mg/L            | 02.24.2021 22:08                |       | 1   |
| Potassium   |         | 7440-09-7  | 5.39     | 0.500 | mg/L            | 02.24.2021 22:08                |       | 1   |
| Silica      |         | 7631-86-9  | 50.4     | 1.07  | mg/L            | 02.24.2021 22:08                |       | 1   |
| Sodium      |         | 7440-23-5  | 175      | 0.500 | mg/L            | 02.24.2021 22:08                |       | 1   |

| Analytical Method:   | Specific Conductance | @25C by SM2510B       |
|----------------------|----------------------|-----------------------|
| i mary fieur method. | Specific Conductance | C 25 C 0 y 511125 102 |

| Tech:        | ANP     |            |        |      |          |                  |        |     |
|--------------|---------|------------|--------|------|----------|------------------|--------|-----|
| Analyst:     | ANP     |            |        |      |          | % Moisture:      | 20.20  |     |
| Seq Number:  | 3151442 |            |        |      |          | SUD: 1104704215- | -20-39 |     |
| Parameter    |         | Cas Number | Result | RL   | Units    | Analysis Date    | Flag   | Dil |
| Conductivity |         | COND       | 1290   | 10.0 | umhos/cm | 02.22.2021 17:06 |        | 1   |



## Straub Corporation, Stanton, TX

| Sample Id:<br>Lab Sample Id      | <b>PR-DXS2</b><br>: 688601-005 |            | Matrix:<br>Date Col | Ground Water<br>lected: 02.16.2021 14:31 |       | Date Received:02.1<br>Sample Depth: 1 | 9.2021 14 | :04 |
|----------------------------------|--------------------------------|------------|---------------------|------------------------------------------|-------|---------------------------------------|-----------|-----|
| Analytical Me                    | thod: Alkalinity by SM         | I2320B     |                     |                                          |       | Prep Method: SM2                      | 2320P     |     |
| Tech:<br>Analyst:<br>Seq Number: | ALZ<br>ALZ<br>3151529          |            | Date Prej           | b: 02.23.2021 11:25                      |       | % Moisture:<br>SUB: T104704215-       | 20-39     |     |
| Parameter                        |                                | Cas Number | Result              | RL                                       | Units | Analysis Date                         | Flag      | Dil |
| Alkalinity, Bicarbo              | onate (as CaCO3)               | 471-34-1   | 367                 | 4.00                                     | mg/L  | 02.23.2021 12:35                      |           | 1   |

| Analytical Me | thod: Inorganic Anior | is by EPA 300/300.1 |           |                    |       | Prep Method: E300 | P    |     |
|---------------|-----------------------|---------------------|-----------|--------------------|-------|-------------------|------|-----|
| Tech:         | CHE                   |                     |           |                    |       | % Moisture:       |      |     |
| Analyst:      | CHE                   |                     | Date Prep | : 02.19.2021 15:15 |       | ,0 101010ture1    |      |     |
| Seq Number:   | 3151337               |                     |           |                    |       |                   |      |     |
| Parameter     |                       | Cas Number          | Result    | RL                 | Units | Analysis Date     | Flag | Dil |
| Bromide       |                       | 24959-67-9          | 0.394     | 0.100              | mg/L  | 02.19.2021 21:50  |      | 1   |
| Chloride      |                       | 16887-00-6          | 19.8      | 0.500              | mg/L  | 02.19.2021 21:50  |      | 1   |
| Fluoride      |                       | 16984-48-8          | 2.70      | 0.100              | mg/L  | 02.19.2021 21:50  |      | 1   |
| Nitrate as N  |                       | 14797-55-8          | < 0.100   | 0.100              | mg/L  | 02.19.2021 21:50  | UK   | 1   |
| Sulfate       |                       | 14808-79-8          | 39.9      | 0.500              | mg/L  | 02.19.2021 21:50  |      | 1   |

| Analytical Method: TDS by SM2540C |         |            |        |      |       |                                |       |     |  |  |  |
|-----------------------------------|---------|------------|--------|------|-------|--------------------------------|-------|-----|--|--|--|
| Tech:                             | DTN     |            |        |      |       |                                |       |     |  |  |  |
| Analyst:                          | DTN     |            |        |      |       | % Moisture:<br>SUB: T104704215 | 20-30 |     |  |  |  |
| Seq Number:                       | 3151412 |            |        |      |       | SOB. 1104704215-               | 20-39 |     |  |  |  |
| Parameter                         |         | Cas Number | Result | RL   | Units | Analysis Date                  | Flag  | Dil |  |  |  |
| Total Dissolved                   | Solids  | 1642222    | 431    | 5.00 | mg/L  | 02.22.2021 14:34               |       | 1   |  |  |  |

| Seq Number: 3151797<br>Parameter |  | Cas Number | Result | RL | Units | Analysis Date    | Flag | Dil |
|----------------------------------|--|------------|--------|----|-------|------------------|------|-----|
| pH                               |  | 12408-02-5 | 7.95   |    | SU    | 02.25.2021 17:02 | K    | 1   |
|                                  |  |            |        |    | 5 6   |                  | ••   | 1   |



#### Straub Corporation, Stanton, TX

Alamito Creek Prod

| Sample Id:    | PR-DXS2                |                  | Matrix:   | Ground Water              |       | Date Received:02.1 | 9.2021 14: | 04  |
|---------------|------------------------|------------------|-----------|---------------------------|-------|--------------------|------------|-----|
| Lab Sample Id | : 688601-005           |                  | Date Col  | llected: 02.16.2021 14:31 |       | Sample Depth: 1    |            |     |
| Analytical Me | thod: Recoverable Meta | als by EPA 200.8 |           |                           |       | Prep Method: E200  | ).8P       |     |
| Tech:         | MLI                    |                  |           |                           |       |                    |            |     |
| Analyst:      | DEP                    |                  | Date Pre  | p: 02.24.2021 11:00       |       | % Moisture:        | 20.20      |     |
| Seq Number:   | 3151703                |                  |           |                           |       | SUB. 1104/04213-   | 20-39      |     |
| Parameter     |                        | Cas Number       | Result    | RL                        | Units | Analysis Date      | Flag       | Dil |
| Arsenic       |                        | 7440-38-2        | 0.00491   | 0.00400                   | mg/L  | 02.25.2021 02:25   |            | 1   |
| Silver        |                        | 7440-22-4        | < 0.00200 | 0.00200                   | mg/L  | 02.25.2021 02:25   | U          | 1   |
| Uranium       |                        | 7440-61-1        | 0.0183    | 0.00100                   | mg/L  | 02.25.2021 02:25   |            | 1   |

Analytical Method: Recoverable Metals per ICP by EPA 200.7

MLI

Tech:

| Analyst:    | DEP     |            | Date Prep | 0     | 2.23.2021 08:30 | % Moisture<br>SUB· T104 | :<br>704215-20-3 | 9    |     |
|-------------|---------|------------|-----------|-------|-----------------|-------------------------|------------------|------|-----|
| Seq Number: | 3151710 |            |           |       |                 | 565.1101                | 101213 20 3      | -    |     |
| Parameter   |         | Cas Number | Result    | RL    | Units           | Analysis                | Date Fl          | ag l | Dil |
| Calcium     |         | 7440-70-2  | 57.1      | 0.200 | mg/L            | 02.24.2021              | 22:12            |      | 1   |
| Iron        |         | 7439-89-6  | 1.03      | 0.200 | mg/L            | 02.24.2021              | 22:12            |      | 1   |
| Magnesium   |         | 7439-95-4  | 4.48      | 0.200 | mg/L            | 02.24.2021              | 22:12            |      | 1   |
| Potassium   |         | 7440-09-7  | 1.58      | 0.500 | mg/L            | 02.24.2021              | 22:12            |      | 1   |
| Silica      |         | 7631-86-9  | 54.7      | 1.07  | mg/L            | 02.24.2021              | 22:12            |      | 1   |
| Sodium      |         | 7440-23-5  | 119       | 0.500 | mg/L            | 02.24.2021              | 22:12            |      | 1   |
|             |         |            |           |       |                 |                         |                  |      |     |

| Analytical Method  | Specific Conductance | @25C by SM2510B  |
|--------------------|----------------------|------------------|
| Analytical Methou. | specific Conductance | @25C by SW12510E |

| Parameter   |         | Cas Number | Result | RL | Units    | Analysis Date    | Flag  | Dil |
|-------------|---------|------------|--------|----|----------|------------------|-------|-----|
| Seq Number: | 3151442 |            | D. K   |    | <b>-</b> |                  |       |     |
| Analyst.    |         |            |        |    | S        | SUB: T104704215- | 20-39 |     |
| Analyst     | ΔΝΡ     |            |        |    | Ģ        | % Moisture:      |       |     |
| Tech:       | ANP     |            |        |    |          |                  |       |     |



## Straub Corporation, Stanton, TX

| Sample Id:<br>Lab Sample Id | <b>PR-DXS3</b><br>: 688601-006 |            | Matrix:<br>Date Coll | Ground Water<br>ected: 02.16.2021 17:07 |       | Date Received:02.1<br>Sample Depth: 1 | 9.2021 14 | :04 |
|-----------------------------|--------------------------------|------------|----------------------|-----------------------------------------|-------|---------------------------------------|-----------|-----|
| Analytical Me               | thod: Alkalinity by SM         | 2320B      |                      |                                         |       | Prep Method: SM2                      | 320P      |     |
| Tech:<br>Analyst:           | ALZ<br>ALZ                     |            | Date Prer            | · 02.23.2021 11:25                      |       | % Moisture:                           |           |     |
| Seq Number:                 | 3151529                        |            | Dute Trep            |                                         |       | SUB: T104704215-                      | 20-39     |     |
| Parameter                   |                                | Cas Number | Result               | RL                                      | Units | Analysis Date                         | Flag      | Dil |
| Alkalinity, Bicarbo         | onate (as CaCO3)               | 471-34-1   | 322                  | 4.00                                    | mg/L  | 02.23.2021 12:42                      |           | 1   |

| Analytical Me | thod: Inorganic Anions | by EPA 300/300.1 | 1          |                  |       | Prep Method: E300P |      |     |
|---------------|------------------------|------------------|------------|------------------|-------|--------------------|------|-----|
| Tech:         | CHE                    |                  |            |                  |       |                    |      |     |
| Analyst:      | CHE                    |                  | Date Prep: | 02.19.2021 15:15 |       | % Moisture:        |      |     |
| Seq Number:   | 3151337                |                  |            |                  |       |                    |      |     |
| Parameter     |                        | Cas Number       | Result     | RL               | Units | Analysis Date      | Flag | Dil |
| Bromide       |                        | 24959-67-9       | 0.418      | 0.100            | mg/L  | 02.19.2021 21:58   |      | 1   |
| Chloride      |                        | 16887-00-6       | 12.0       | 0.500            | mg/L  | 02.19.2021 21:58   |      | 1   |
| Fluoride      |                        | 16984-48-8       | 1.98       | 0.100            | mg/L  | 02.19.2021 21:58   |      | 1   |
| Nitrate as N  |                        | 14797-55-8       | 0.413      | 0.100            | mg/L  | 02.19.2021 21:58   | Κ    | 1   |
| Sulfate       |                        | 14808-79-8       | 49.8       | 0.500            | mg/L  | 02.19.2021 21:58   |      | 1   |

| Total Dissolved                   | Solids  | 1642222    | 423    | 5.00 | mg/L  | 02.22.2021 14:34               |       | 1   |  |  |  |
|-----------------------------------|---------|------------|--------|------|-------|--------------------------------|-------|-----|--|--|--|
| Parameter                         |         | Cas Number | Result | RL   | Units | Analysis Date                  | Flag  | Dil |  |  |  |
| Seq Number:                       | 3151412 |            |        |      |       | SOD. 1104704215                | 20-37 |     |  |  |  |
| Analyst:                          | DTN     |            |        |      |       | % Moisture:<br>SUB: T104704215 | 20-30 |     |  |  |  |
| Tech:                             | DTN     |            |        |      |       |                                |       |     |  |  |  |
| Analytical Method: TDS by SM2540C |         |            |        |      |       |                                |       |     |  |  |  |

| Analytical Me | ethod: pH by SM4500-H | ł          |        |    |            |              |       |     |
|---------------|-----------------------|------------|--------|----|------------|--------------|-------|-----|
| Tech:         | ANP                   |            |        |    |            |              |       |     |
| Analyst:      | ANP                   |            |        |    | % Mo       | visture:     | 20.20 |     |
| Seq Number:   | 3151797               |            |        |    | SOB:       | 1104/04215-  | 20-39 |     |
| Parameter     |                       | Cas Number | Result | RL | Units A    | 1alysis Date | Flag  | Dil |
| pH            |                       | 12408-02-5 | 8.10   |    | SU 02.2    | 5.2021 17:02 | K     | 1   |
| Temperature   |                       | TEMP       | 20.0   |    | Deg C 02.2 | 5.2021 17:02 | Κ     | 1   |



#### Straub Corporation, Stanton, TX

Alamito Creek Prod

| Sample Id:    | PR-DXS3                |                  | Matrix:                          | Ground Water        |       | Date Received:02.1 | 9.2021 14: | 04  |
|---------------|------------------------|------------------|----------------------------------|---------------------|-------|--------------------|------------|-----|
| Lab Sample Id | l: 688601-006          |                  | Date Collected: 02.16.2021 17:07 |                     |       | Sample Depth: 1    |            |     |
| Analytical Me | thod: Recoverable Meta | als by EPA 200.8 |                                  |                     |       | Prep Method: E200  | ).8P       |     |
| Tech:         | MLI                    |                  |                                  |                     |       |                    |            |     |
| Analyst:      | DEP                    |                  | Date Pre                         | p: 02.24.2021 11:00 |       | % Moisture:        | 20.20      |     |
| Seq Number:   | 3151703                |                  |                                  |                     |       | SUD: 1104/04213-   | 20-39      |     |
| Parameter     |                        | Cas Number       | Result                           | RL                  | Units | Analysis Date      | Flag       | Dil |
| Arsenic       |                        | 7440-38-2        | < 0.00400                        | 0.00400             | mg/L  | 02.25.2021 02:28   | U          | 1   |
| Silver        |                        | 7440-22-4        | < 0.00200                        | 0.00200             | mg/L  | 02.25.2021 02:28   | U          | 1   |
| Uranium       |                        | 7440-61-1        | 0.0366                           | 0.00100             | mg/L  | 02.25.2021 02:28   |            | 1   |

Analytical Method: Recoverable Metals per ICP by EPA 200.7

MLI

Tech:

| Analyst: DEP |         |            | Date Prep: 02.23.2021 08:30 |       | .23.2021 08:30 | % Moisture:<br>SUB: T104704215-20-39 |       |     |   |
|--------------|---------|------------|-----------------------------|-------|----------------|--------------------------------------|-------|-----|---|
| Seq Number:  | 3151710 |            |                             |       |                | 565.1101/01213                       | 20 37 |     |   |
| Parameter    |         | Cas Number | Result                      | RL    | Units          | Analysis Date                        | Flag  | Dil |   |
| Calcium      |         | 7440-70-2  | 50.8                        | 0.200 | mg/L           | 02.24.2021 22:16                     |       | 1   | • |
| Iron         |         | 7439-89-6  | < 0.200                     | 0.200 | mg/L           | 02.24.2021 22:16                     | U     | 1   |   |
| Magnesium    |         | 7439-95-4  | 1.97                        | 0.200 | mg/L           | 02.24.2021 22:16                     |       | 1   |   |
| Potassium    |         | 7440-09-7  | 2.26                        | 0.500 | mg/L           | 02.24.2021 22:16                     |       | 1   |   |
| Silica       |         | 7631-86-9  | 42.2                        | 1.07  | mg/L           | 02.24.2021 22:16                     |       | 1   |   |
| Sodium       |         | 7440-23-5  | 115                         | 0.500 | mg/L           | 02.24.2021 22:16                     |       | 1   |   |
|              |         |            |                             |       |                |                                      |       |     |   |

| Analytical Method  | Specific Conductance | @25C by SM2510B  |
|--------------------|----------------------|------------------|
| Analytical Methou. | specific Conductance | @25C by SW12510E |

| Conductivity |         | COND       | 799    | 10.0 | umhos/cm | 02.22.2021 17:06 |        | 1   |
|--------------|---------|------------|--------|------|----------|------------------|--------|-----|
| Parameter    |         | Cas Number | Result | RL   | Units    | Analysis Date    | Flag   | Dil |
| Seq Number:  | 3151442 |            |        |      |          | 50D. 1104704215  | -20-37 |     |
| Analyst:     | ANP     |            |        |      |          | % Moisture:      | 20-30  |     |
| Tech:        | ANP     |            |        |      |          |                  |        |     |



## Straub Corporation, Stanton, TX

| Sample Id: <b>PR-M0FNWW1</b> Lab Sample Id:688601-007 |                        |            | Matrix:<br>Date Col | Ground Water<br>lected: 02.17.2021 10:59 |       | Date Received:02.19.2021 14:04<br>Sample Depth: 300 |       |     |  |
|-------------------------------------------------------|------------------------|------------|---------------------|------------------------------------------|-------|-----------------------------------------------------|-------|-----|--|
| Analytical Me                                         | thod: Alkalinity by SM | 2320B      |                     |                                          |       | Prep Method: SM2                                    | .320P |     |  |
| Tech:<br>Analyst:                                     | ALZ<br>ALZ             |            | Date Pre            | p: 02.23.2021 11:25                      |       | % Moisture:                                         |       |     |  |
| Seq Number:                                           | 3151529                |            | Dute The            | 2. 02.20202111.20                        |       | SUB: T104704215-                                    | 20-39 |     |  |
| Parameter                                             |                        | Cas Number | Result              | RL                                       | Units | Analysis Date                                       | Flag  | Dil |  |
| Alkalinity, Bicarbo                                   | onate (as CaCO3)       | 471-34-1   | 220                 | 4.00                                     | mg/L  | 02.23.2021 13:00                                    |       | 1   |  |

| Analytical Me | thod: Inorganic Anions | by EPA 300/300.1 |            |                  | Prep Method: E300P |                  |      |     |
|---------------|------------------------|------------------|------------|------------------|--------------------|------------------|------|-----|
| Tech:         | CHE                    |                  |            |                  |                    |                  |      |     |
| Analyst:      | CHE                    |                  | Date Prep: | 02.19.2021 15:15 |                    | % Moisture:      |      |     |
| Seq Number:   | 3151337                |                  |            |                  |                    |                  |      |     |
| Parameter     |                        | Cas Number       | Result     | RL               | Units              | Analysis Date    | Flag | Dil |
| Bromide       |                        | 24959-67-9       | 0.442      | 0.100            | mg/L               | 02.19.2021 22:07 |      | 1   |
| Chloride      |                        | 16887-00-6       | 14.7       | 0.500            | mg/L               | 02.19.2021 22:07 |      | 1   |
| Fluoride      |                        | 16984-48-8       | 0.937      | 0.100            | mg/L               | 02.19.2021 22:07 |      | 1   |
| Nitrate as N  |                        | 14797-55-8       | 2.06       | 0.100            | mg/L               | 02.19.2021 22:07 | Κ    | 1   |
| Sulfate       |                        | 14808-79-8       | 44.0       | 0.500            | mg/L               | 02.19.2021 22:07 |      | 1   |

| Total Dissolved | Solids             | 1642222    | 372    | 5.00 | mg/L  | 02.22.2021 14:34               |       | 1   |
|-----------------|--------------------|------------|--------|------|-------|--------------------------------|-------|-----|
| Parameter       |                    | Cas Number | Result | RL   | Units | Analysis Date                  | Flag  | Dil |
| Seq Number:     | 3151412            |            |        |      |       | 505.1104704215                 | 20-37 |     |
| Analyst:        | DTN                |            |        |      |       | % Moisture:<br>SUB: T104704215 | 20-30 |     |
| Tech:           | DTN                |            |        |      |       |                                |       |     |
| Analytical Me   | ethod: TDS by SM25 | 540C       |        |      |       |                                |       |     |

| Analytical M | ethod: pH by SM4500-I | Н          |        |    |       |                  |       |     |
|--------------|-----------------------|------------|--------|----|-------|------------------|-------|-----|
| Tech:        | ANP                   |            |        |    |       |                  |       |     |
| Analyst:     | ANP                   |            |        |    |       | % Moisture:      | 20.30 |     |
| Seq Number:  | 3151797               |            |        |    |       | SOD. 1104704215- | 20-39 |     |
| Parameter    |                       | Cas Number | Result | RL | Units | Analysis Date    | Flag  | Dil |
| pH           |                       | 12408-02-5 | 8.49   |    | SU    | 02.25.2021 17:02 | K     | 1   |
| Temperature  |                       | TEMP       | 20.0   |    | Deg C | 02.25.2021 17:02 | Κ     | 1   |



#### Straub Corporation, Stanton, TX

Alamito Creek Prod

| Sample Id:    | PR-M0FNWW1             |                  | Matrix:                          | Ground Water        |       | Date Received:02.1 | 9.2021 14: | 04  |  |
|---------------|------------------------|------------------|----------------------------------|---------------------|-------|--------------------|------------|-----|--|
| Lab Sample Id | l: 688601-007          |                  | Date Collected: 02.17.2021 10:59 |                     |       | Sample Depth: 300  |            |     |  |
| Analytical Me | thod: Recoverable Meta | als by EPA 200.8 |                                  |                     |       | Prep Method: E200  | ).8P       |     |  |
| Tech:         | MLI                    |                  |                                  |                     |       |                    |            |     |  |
| Analyst:      | DEP                    |                  | Date Pre                         | p: 02.24.2021 11:00 |       | % Moisture:        | 20.20      |     |  |
| Seq Number:   | 3151703                |                  |                                  |                     |       | SUB. 1104704213-   | 20-39      |     |  |
| Parameter     |                        | Cas Number       | Result                           | RL                  | Units | Analysis Date      | Flag       | Dil |  |
| Arsenic       |                        | 7440-38-2        | < 0.00400                        | 0.00400             | mg/L  | 02.25.2021 02:31   | U          | 1   |  |
| Silver        |                        | 7440-22-4        | < 0.00200                        | 0.00200             | mg/L  | 02.25.2021 02:31   | U          | 1   |  |
| Uranium       |                        | 7440-61-1        | 0.0513                           | 0.00100             | mg/L  | 02.25.2021 02:31   |            | 1   |  |

Analytical Method: Recoverable Metals per ICP by EPA 200.7

MLI

Tech:

| Analyst: DEP |         |            | Date Prep: 02.23.2021 08:30 |      | 02.23.2021 08:30 | % Moisture:<br>SUB: T104704215-20-39 |       |     |  |
|--------------|---------|------------|-----------------------------|------|------------------|--------------------------------------|-------|-----|--|
| Seq Number:  | 3151710 |            |                             |      |                  | 565.1104704215                       | 20 37 |     |  |
| Parameter    |         | Cas Number | Result                      | RL   | Units            | Analysis Date                        | Flag  | Dil |  |
| Calcium      |         | 7440-70-2  | 10.8                        | 0.20 | 0 mg/L           | 02.24.2021 22:21                     |       | 1   |  |
| Iron         |         | 7439-89-6  | < 0.200                     | 0.20 | 0 mg/L           | 02.24.2021 22:21                     | U     | 1   |  |
| Magnesium    |         | 7439-95-4  | < 0.200                     | 0.20 | 0 mg/L           | 02.24.2021 22:21                     | U     | 1   |  |
| Potassium    |         | 7440-09-7  | < 0.500                     | 0.50 | 0 mg/L           | 02.24.2021 22:21                     | U     | 1   |  |
| Silica       |         | 7631-86-9  | 35.4                        | 1.07 | 7 mg/L           | 02.24.2021 22:21                     |       | 1   |  |
| Sodium       |         | 7440-23-5  | 118                         | 0.50 | 0 mg/L           | 02.24.2021 22:21                     |       | 1   |  |
|              |         |            |                             |      |                  |                                      |       |     |  |

| Analyst:     | ANP     |            |        |      |          | % Moisture:<br>SUB: T104704215- | 20-39 |     |
|--------------|---------|------------|--------|------|----------|---------------------------------|-------|-----|
| Parameter    | 5151442 | Cas Number | Result | RL   | Units    | Analysis Date                   | Flag  | Dil |
| Conductivity |         | COND       | 614    | 10.0 | umhos/cm | 02.22.2021 17:06                | _     | 1   |



## Straub Corporation, Stanton, TX

| Sample Id: <b>PR-M0FNWW2</b> Lab Sample Id:688601-008 |                        |            | Matrix:<br>Date Col | Ground Water<br>lected: 02.17.2021 12:10 |       | Date Received:02.1<br>Sample Depth: 300 | 9.2021 14 | :04 |
|-------------------------------------------------------|------------------------|------------|---------------------|------------------------------------------|-------|-----------------------------------------|-----------|-----|
| Analytical Me                                         | thod: Alkalinity by SM | I2320B     |                     |                                          |       | Prep Method: SM2                        | 2320P     |     |
| Tech:                                                 | ALZ                    |            |                     |                                          |       | % Moisture                              |           |     |
| Analyst:                                              | ALZ                    |            | Date Prep           | p: 02.23.2021 11:25                      |       | SUB: T104704215-                        | 20-39     |     |
| Seq Number:                                           | 3151529                |            |                     |                                          |       | 565.1104704215                          | 20 37     |     |
| Parameter                                             |                        | Cas Number | Result              | RL                                       | Units | Analysis Date                           | Flag      | Dil |
| Alkalinity, Bicarbo                                   | onate (as CaCO3)       | 471-34-1   | 230                 | 4.00                                     | mg/L  | 02.23.2021 13:06                        |           | 1   |

| Analytical Me | thod: Inorganic Anions | by EPA 300/300.1 |            |                  |       | Prep Method: E300 | Р    |     |
|---------------|------------------------|------------------|------------|------------------|-------|-------------------|------|-----|
| Tech:         | CHE                    |                  |            |                  |       |                   |      |     |
| Analyst:      | CHE                    |                  | Date Prep: | 02.19.2021 15:15 |       | % Moisture:       |      |     |
| Seq Number:   | 3151337                |                  |            |                  |       |                   |      |     |
| Parameter     |                        | Cas Number       | Result     | RL               | Units | Analysis Date     | Flag | Dil |
| Bromide       |                        | 24959-67-9       | 0.323      | 0.100            | mg/L  | 02.19.2021 22:16  |      | 1   |
| Chloride      |                        | 16887-00-6       | 9.15       | 0.500            | mg/L  | 02.19.2021 22:16  |      | 1   |
| Fluoride      |                        | 16984-48-8       | 1.04       | 0.100            | mg/L  | 02.19.2021 22:16  |      | 1   |
| Nitrate as N  |                        | 14797-55-8       | 1.41       | 0.100            | mg/L  | 02.19.2021 22:16  | Κ    | 1   |
| Sulfate       |                        | 14808-79-8       | 19.2       | 0.500            | mg/L  | 02.19.2021 22:16  |      | 1   |

| Analytical Me   | ethod: TDS by SM254 | 0C         |        |      |       |                  |        |     |
|-----------------|---------------------|------------|--------|------|-------|------------------|--------|-----|
| Tech:           | DTN                 |            |        |      |       | 0/ 34 * /        |        |     |
| Analyst:        | DTN                 |            |        |      |       | % Moisture:      | 20.30  |     |
| Seq Number:     | 3151412             |            |        |      |       | SOD. 1104704215- | -20-39 |     |
| Parameter       |                     | Cas Number | Result | RL   | Units | Analysis Date    | Flag   | Dil |
| Total Dissolved | Solids              | 1642222    | 366    | 5.00 | mg/L  | 02.22.2021 14:34 |        | 1   |

| Analytical Me | ethod: pH by SM4500-H |            |        |    |                       |                  |       |     |  |
|---------------|-----------------------|------------|--------|----|-----------------------|------------------|-------|-----|--|
| Tech:         | ANP                   |            |        |    |                       |                  |       |     |  |
| Analyst:      | ANP                   |            |        |    |                       | % Moisture:      | 20.20 |     |  |
| Seq Number:   | 3151797               |            |        |    | SUB: T104704215-20-39 |                  |       |     |  |
| Parameter     |                       | Cas Number | Result | RL | Units                 | Analysis Date    | Flag  | Dil |  |
| pH            |                       | 12408-02-5 | 8.59   |    | SU                    | 02.25.2021 17:02 | K     | 1   |  |
| Temperature   |                       | TEMP       | 19.9   |    | Deg C                 | 02.25.2021 17:02 | Κ     | 1   |  |



#### Straub Corporation, Stanton, TX

Alamito Creek Prod

| Sample Id:    | PR-M0FNWW2             |                  | Matrix:                          | Ground Water        |       | Date Received:02.1 | 9.2021 14 | :04 |
|---------------|------------------------|------------------|----------------------------------|---------------------|-------|--------------------|-----------|-----|
| Lab Sample Id | : 688601-008           |                  | Date Collected: 02.17.2021 12:10 |                     |       | Sample Depth: 300  |           |     |
| Analytical Me | thod: Recoverable Meta | als by EPA 200.8 |                                  |                     |       | Prep Method: E200  | ).8P      |     |
| Tech:         | MLI                    |                  |                                  |                     |       | 0/ <b>3</b> .5     |           |     |
| Analyst:      | DEP                    |                  | Date Pre                         | p: 02.24.2021 11:00 |       | % Moisture:        | 20.20     |     |
| Seq Number:   | 3151703                |                  |                                  |                     |       | SUB. 1104/04213-   | 20-39     |     |
| Parameter     |                        | Cas Number       | Result                           | RL                  | Units | Analysis Date      | Flag      | Dil |
| Arsenic       |                        | 7440-38-2        | < 0.00400                        | 0.00400             | mg/L  | 02.25.2021 02:34   | U         | 1   |
| Silver        |                        | 7440-22-4        | < 0.00200                        | 0.00200             | mg/L  | 02.25.2021 02:34   | U         | 1   |
| Uranium       |                        | 7440-61-1        | 0.0410                           | 0.00100             | mg/L  | 02.25.2021 02:34   |           | 1   |

Analytical Method: Recoverable Metals per ICP by EPA 200.7

MLI

Tech:

| Analyst: DEP |         |            | Date Prep | o: 02.2 | 23.2021 08:30 | % Moisture:<br>SUB: T104704215- | 20-39 |     |
|--------------|---------|------------|-----------|---------|---------------|---------------------------------|-------|-----|
| Seq Number:  | 3151710 |            |           |         |               | 565.1101/01215                  | 20 37 |     |
| Parameter    |         | Cas Number | Result    | RL      | Units         | Analysis Date                   | Flag  | Dil |
| Calcium      |         | 7440-70-2  | 9.11      | 0.200   | mg/L          | 02.24.2021 22:33                |       | 1   |
| Iron         |         | 7439-89-6  | < 0.200   | 0.200   | mg/L          | 02.24.2021 22:33                | U     | 1   |
| Magnesium    |         | 7439-95-4  | < 0.200   | 0.200   | mg/L          | 02.24.2021 22:33                | U     | 1   |
| Potassium    |         | 7440-09-7  | 0.517     | 0.500   | mg/L          | 02.24.2021 22:33                |       | 1   |
| Silica       |         | 7631-86-9  | 33.1      | 1.07    | mg/L          | 02.24.2021 22:33                |       | 1   |
| Sodium       |         | 7440-23-5  | 113       | 0.500   | mg/L          | 02.24.2021 22:33                |       | 1   |
|              |         |            |           |         |               |                                 |       |     |

| Conductivity |         | COND       | 543    | 10.0 | umhos/cm | 02.22.2021 17:06                |        | 1   |
|--------------|---------|------------|--------|------|----------|---------------------------------|--------|-----|
| Parameter    |         | Cas Number | Result | RL   | Units    | Analysis Date                   | Flag   | Dil |
| Seq Number:  | 3151442 |            |        |      |          | 565.1104704215                  | -20-37 |     |
| Analyst:     | ANP     |            |        |      |          | % Moisture:<br>SUB: T104704215. | .20-39 |     |
| Tech:        | ANP     |            |        |      |          |                                 |        |     |



## Straub Corporation, Stanton, TX

| Sample Id:<br>Lab Sample Id | <b>PR-IBS1</b><br>: 688601-009 |            | Matrix:<br>Date Col | Ground Water<br>lected: 02.17.2021 14:08 |       | Date Received:02.19.2021 14:04<br>Sample Depth: 19 |       |     |
|-----------------------------|--------------------------------|------------|---------------------|------------------------------------------|-------|----------------------------------------------------|-------|-----|
| Analytical Me               | thod: Alkalinity by SM         | 2320B      |                     |                                          |       | Prep Method: SM2                                   | .320P |     |
| Tech:                       | ALZ                            |            |                     |                                          |       | % Moisture:                                        |       |     |
| Analyst:                    | ALZ                            |            | Date Pre            | p: 02.23.2021 11:25                      |       | SUB· T104704215-                                   | 20-39 |     |
| Seq Number:                 | 3151529                        |            |                     |                                          |       | 500.1104704215                                     | 20-37 |     |
| Parameter                   |                                | Cas Number | Result              | RL                                       | Units | Analysis Date                                      | Flag  | Dil |
| Alkalinity, Bicarbo         | onate (as CaCO3)               | 471-34-1   | 232                 | 4.00                                     | mg/L  | 02.23.2021 13:12                                   |       | 1   |

| Analytical Method: Inorganic Anions by EPA 300/30 |         |            |            |                  |       | Prep Method: E300 | Р    |     |
|---------------------------------------------------|---------|------------|------------|------------------|-------|-------------------|------|-----|
| Tech:                                             | CHE     |            |            |                  |       | 0/ 34 * /         |      |     |
| Analyst:                                          | CHE     |            | Date Prep: | 02.19.2021 15:15 |       | % Moisture:       |      |     |
| Seq Number:                                       | 3151337 |            |            |                  |       |                   |      |     |
| Parameter                                         |         | Cas Number | Result     | RL               | Units | Analysis Date     | Flag | Dil |
| Bromide                                           |         | 24959-67-9 | 0.322      | 0.100            | mg/L  | 02.19.2021 18:38  |      | 1   |
| Chloride                                          |         | 16887-00-6 | 7.24       | 0.500            | mg/L  | 02.19.2021 18:38  |      | 1   |
| Fluoride                                          |         | 16984-48-8 | 0.839      | 0.100            | mg/L  | 02.19.2021 18:38  |      | 1   |
| Nitrate as N                                      |         | 14797-55-8 | 1.11       | 0.100            | mg/L  | 02.19.2021 18:38  | Κ    | 1   |
| Sulfate                                           |         | 14808-79-8 | 9.67       | 0.500            | mg/L  | 02.19.2021 18:38  |      | 1   |

| Total Dissolved | Solids           | 1642222    | 231    | 5.00 | mg/L  | 02.22.2021 14:34               |        | 1   |
|-----------------|------------------|------------|--------|------|-------|--------------------------------|--------|-----|
| Parameter       |                  | Cas Number | Result | RL   | Units | Analysis Date                  | Flag   | Dil |
| Seq Number:     | 3151412          |            |        |      |       | 505.1104704215                 | -20-37 |     |
| Analyst:        | DTN              |            |        |      |       | % Moisture:<br>SUB: T104704215 | 20-30  |     |
| Tech:           | DTN              |            |        |      |       |                                |        |     |
| Analytical Me   | ethod: TDS by SI | M2540C     |        |      |       |                                |        |     |

| Analytical M      | ethod: pH by SM45         | б00-Н      |        |    |                                      |                  |      |     |
|-------------------|---------------------------|------------|--------|----|--------------------------------------|------------------|------|-----|
| Tech:<br>Analyst: | Tech: ANP<br>Analyst: ANP |            |        |    | % Moisture:<br>SUB: T104704215-20-39 |                  |      |     |
| Seq Number:       | 3151797                   |            |        |    |                                      |                  |      |     |
| Parameter         |                           | Cas Number | Result | RL | Units                                | Analysis Date    | Flag | Dil |
| pH                |                           | 12408-02-5 | 8.33   |    | SU                                   | 02.25.2021 17:02 | K    | 1   |
| Temperature       |                           | TEMP       | 20.0   |    | Deg C                                | 02.25.2021 17:02 | Κ    | 1   |


### Straub Corporation, Stanton, TX

Alamito Creek Prod

| Sample Id:    | PR-IBS1                |                  | Matrix:                          | Ground Water         |       | Date Received:02.1               | 9.2021 14: | 04  |  |
|---------------|------------------------|------------------|----------------------------------|----------------------|-------|----------------------------------|------------|-----|--|
| Lab Sample Id | l: 688601-009          |                  | Date Collected: 02.17.2021 14:08 |                      |       | Sample Depth: 19                 |            |     |  |
| Analytical Me | thod: Recoverable Meta | als by EPA 200.8 |                                  |                      |       | Prep Method: E200                | ).8P       |     |  |
| Tech:         | MLI                    |                  |                                  |                      |       | 0/ 1/ 1                          |            |     |  |
| Analyst:      | DEP                    |                  | Date Pre                         | ep: 02.24.2021 11:00 |       | % Moisture: $SUP_{1}$ T104704215 | 20.20      |     |  |
| Seq Number:   | 3151703                |                  |                                  |                      |       | SUB. 1104704213-                 | 20-39      |     |  |
| Parameter     |                        | Cas Number       | Result                           | RL                   | Units | Analysis Date                    | Flag       | Dil |  |
| Arsenic       |                        | 7440-38-2        | 0.00492                          | 0.00400              | mg/L  | 02.25.2021 02:37                 |            | 1   |  |
| Silver        |                        | 7440-22-4        | < 0.00200                        | 0.00200              | mg/L  | 02.25.2021 02:37                 | U          | 1   |  |
| Uranium       |                        | 7440-61-1        | 0.0112                           | 0.00100              | mg/L  | 02.25.2021 02:37                 |            | 1   |  |

Analytical Method: Recoverable Metals per ICP by EPA 200.7

MLI

Tech:

| Analyst: DEP |         |            | Date Prep: 02.23.2021 |       | .23.2021 08:30 | 30 % Moisture:<br>SUB: T104704215-20-39 |       |     |  |  |
|--------------|---------|------------|-----------------------|-------|----------------|-----------------------------------------|-------|-----|--|--|
| Seq Number:  | 3151710 |            |                       |       |                | 50211101101210                          | 20 07 |     |  |  |
| Parameter    |         | Cas Number | Result                | RL    | Units          | Analysis Date                           | Flag  | Dil |  |  |
| Calcium      |         | 7440-70-2  | 48.8                  | 0.200 | mg/L           | 02.24.2021 22:37                        |       | 1   |  |  |
| Iron         |         | 7439-89-6  | < 0.200               | 0.200 | mg/L           | 02.24.2021 22:37                        | U     | 1   |  |  |
| Magnesium    |         | 7439-95-4  | 3.28                  | 0.200 | mg/L           | 02.24.2021 22:37                        |       | 1   |  |  |
| Potassium    |         | 7440-09-7  | 5.08                  | 0.500 | mg/L           | 02.24.2021 22:37                        |       | 1   |  |  |
| Silica       |         | 7631-86-9  | 49.5                  | 1.07  | mg/L           | 02.24.2021 22:37                        |       | 1   |  |  |
| Sodium       |         | 7440-23-5  | 54.0                  | 0.500 | mg/L           | 02.24.2021 22:37                        |       | 1   |  |  |
|              |         |            |                       |       |                |                                         |       |     |  |  |

| Analytical Method  | Specific Conductance | @25C by SM2510B  |
|--------------------|----------------------|------------------|
| Anarytical Methou. | specific Conductance | @25C by SW12510E |

| Conductivity |         | COND       | 502    | 10.0 | umhos/cm | 02.22.2021 17:06                |        | 1   |
|--------------|---------|------------|--------|------|----------|---------------------------------|--------|-----|
| Parameter    |         | Cas Number | Result | RL   | Units    | Analysis Date                   | Flag   | Dil |
| Seq Number:  | 3151442 |            |        |      |          | 565.1104704215                  | -20-37 |     |
| Analyst:     | ANP     |            |        |      |          | % Moisture:<br>SUB: T104704215. | 20-39  |     |
| Tech:        | ANP     |            |        |      |          |                                 |        |     |



## Straub Corporation, Stanton, TX

Alamito Creek Prod

| Sample Id:<br>Lab Sample Id      | <b>PR-IBS2</b><br>: 688601-010 |            | Matrix:<br>Date Coll | Ground Water<br>ected: 02.17.2021 17:17 |       | Date Received:02.1<br>Sample Depth: 2 | 9.2021 14 | :04 |
|----------------------------------|--------------------------------|------------|----------------------|-----------------------------------------|-------|---------------------------------------|-----------|-----|
| Analytical Me                    | thod: Alkalinity by SM         | 2320B      |                      |                                         |       | Prep Method: SM2                      | 2320P     |     |
| Tech:<br>Analyst:<br>Seq Number: | ALZ<br>ALZ<br>3151529          |            | Date Prep            | o: 02.23.2021 11:25                     |       | % Moisture:<br>SUB: T104704215-       | 20-39     |     |
| Parameter                        |                                | Cas Number | Result               | RL                                      | Units | Analysis Date                         | Flag      | Dil |
| Alkalinity, Bicarbo              | onate (as CaCO3)               | 471-34-1   | 368                  | 4.00                                    | mg/L  | 02.23.2021 13:20                      |           | 1   |

| Analytical Me | thod: Inorganic Anions | by EPA 300/300.1 |            |                  |       | Prep Method: E300 | Р    |     |
|---------------|------------------------|------------------|------------|------------------|-------|-------------------|------|-----|
| Tech:         | CHE                    |                  |            |                  |       | % Moisture        |      |     |
| Analyst:      | CHE                    |                  | Date Prepa | 02.19.2021 15:15 |       | /o Worsture.      |      |     |
| Seq Number:   | 3151337                |                  |            |                  |       |                   |      |     |
| Parameter     |                        | Cas Number       | Result     | RL               | Units | Analysis Date     | Flag | Dil |
| Bromide       |                        | 24959-67-9       | < 0.100    | 0.100            | mg/L  | 02.19.2021 16:28  | U    | 1   |
| Chloride      |                        | 16887-00-6       | 12.3       | 0.500            | mg/L  | 02.19.2021 16:28  |      | 1   |
| Fluoride      |                        | 16984-48-8       | 1.12       | 0.100            | mg/L  | 02.19.2021 16:28  |      | 1   |
| Nitrate as N  |                        | 14797-55-8       | < 0.100    | 0.100            | mg/L  | 02.19.2021 16:28  | U    | 1   |
| Sulfate       |                        | 14808-79-8       | 27.5       | 0.500            | mg/L  | 02.19.2021 16:28  |      | 1   |

| Total Dissolved | Solids          | 1642222    | 431    | 5.00 | mg/L  | 02.22.2021 14:34               |       | 1   |
|-----------------|-----------------|------------|--------|------|-------|--------------------------------|-------|-----|
| Parameter       |                 | Cas Number | Result | RL   | Units | Analysis Date                  | Flag  | Dil |
| Seq Number:     | 3151412         |            |        |      |       | SOD. 1104704215                | 20-37 |     |
| Analyst:        | DTN             |            |        |      |       | % Moisture:<br>SUB: T104704215 | 20-30 |     |
| Tech:           | DTN             |            |        |      |       |                                |       |     |
| Analytical Me   | ethod: TDS by S | SM2540C    |        |      |       |                                |       |     |

| Analytical Me | ethod: pH by SM4500-H | [          |        |    |       |                  |       |     |
|---------------|-----------------------|------------|--------|----|-------|------------------|-------|-----|
| Tech:         | ANP                   |            |        |    |       |                  |       |     |
| Analyst:      | ANP                   |            |        |    |       | % Moisture:      | 20.20 |     |
| Seq Number:   | 3151797               |            |        |    |       | SUB: 1104/04215- | 20-39 |     |
| Parameter     |                       | Cas Number | Result | RL | Units | Analysis Date    | Flag  | Dil |
| pН            |                       | 12408-02-5 | 8.47   |    | SU    | 02.25.2021 17:02 | K     | 1   |
| Temperature   |                       | TEMP       | 20.0   |    | Deg C | 02.25.2021 17:02 | Κ     | 1   |



### Straub Corporation, Stanton, TX

Alamito Creek Prod

| Sample Id:    | PR-IBS2                |                  | Matrix:                          | Ground Water         |       | Date Received:02.1 | 9.2021 14: | 04  |  |
|---------------|------------------------|------------------|----------------------------------|----------------------|-------|--------------------|------------|-----|--|
| Lab Sample Id | l: 688601-010          |                  | Date Collected: 02.17.2021 17:17 |                      |       | Sample Depth: 2    |            |     |  |
| Analytical Me | thod: Recoverable Meta | als by EPA 200.8 |                                  |                      |       | Prep Method: E200  | ).8P       |     |  |
| Tech:         | MLI                    |                  |                                  |                      |       |                    |            |     |  |
| Analyst:      | DEP                    |                  | Date Pre                         | ep: 02.24.2021 11:00 |       | % Moisture:        | 20.20      |     |  |
| Seq Number:   | 3151703                |                  |                                  |                      |       | SUB. 1104/04213-   | 20-39      |     |  |
| Parameter     |                        | Cas Number       | Result                           | RL                   | Units | Analysis Date      | Flag       | Dil |  |
| Arsenic       |                        | 7440-38-2        | 0.00445                          | 0.00400              | mg/L  | 02.25.2021 02:40   |            | 1   |  |
| Silver        |                        | 7440-22-4        | < 0.00200                        | 0.00200              | mg/L  | 02.25.2021 02:40   | U          | 1   |  |
| Uranium       |                        | 7440-61-1        | 0.0221                           | 0.00100              | mg/L  | 02.25.2021 02:40   |            | 1   |  |

Analytical Method: Recoverable Metals per ICP by EPA 200.7

MLI

Tech:

| Analyst: DEP |         |            | Date Prep: 02.23.2021 08:30 |       | 2.23.2021 08:30 | % Moisture:<br>SUB: T104704215-20-39 |          |      |     |  |
|--------------|---------|------------|-----------------------------|-------|-----------------|--------------------------------------|----------|------|-----|--|
| Seq Number:  | 3151710 |            |                             |       |                 | 5021110                              |          | 0 07 |     |  |
| Parameter    |         | Cas Number | Result                      | RL    | Units           | Analys                               | sis Date | Flag | Dil |  |
| Calcium      |         | 7440-70-2  | 60.9                        | 0.200 | mg/L            | 02.24.20                             | 21 22:42 |      | 1   |  |
| Iron         |         | 7439-89-6  | 0.221                       | 0.200 | mg/L            | 02.24.20                             | 21 22:42 |      | 1   |  |
| Magnesium    |         | 7439-95-4  | 4.72                        | 0.200 | mg/L            | 02.24.20                             | 21 22:42 |      | 1   |  |
| Potassium    |         | 7440-09-7  | 3.86                        | 0.500 | mg/L            | 02.24.20                             | 21 22:42 |      | 1   |  |
| Silica       |         | 7631-86-9  | 42.4                        | 1.07  | mg/L            | 02.24.20                             | 21 22:42 |      | 1   |  |
| Sodium       |         | 7440-23-5  | 106                         | 0.500 | mg/L            | 02.24.20                             | 21 22:42 |      | 1   |  |
|              |         |            |                             |       |                 |                                      |          |      |     |  |

| Analytical Method:   | Specific Conductance | @25C by SM2510B       |
|----------------------|----------------------|-----------------------|
| i mary fieur method. | Specific Conductance | C 25 C 0 y 511125 102 |

| Conductivity |         | COND       | 810    | 10.0 | umhos/cm | 02.22.2021 17:06                |        | 1   |
|--------------|---------|------------|--------|------|----------|---------------------------------|--------|-----|
| Parameter    |         | Cas Number | Result | RL   | Units    | Analysis Date                   | Flag   | Dil |
| Seq Number:  | 3151442 |            |        |      |          | 565.1104704215                  | -20-37 |     |
| Analyst:     | ANP     |            |        |      |          | % Moisture:<br>SUB: T104704215. | 20-39  |     |
| Tech:        | ANP     |            |        |      |          |                                 |        |     |



## Straub Corporation, Stanton, TX

Alamito Creek Prod

| Sample Id:          | PR-000492              |            | Matrix:   | Ground Water            |       | Date Received:02.1 | 9.2021 14 | :04 |
|---------------------|------------------------|------------|-----------|-------------------------|-------|--------------------|-----------|-----|
| Lab Sample Id       | : 688601-011           |            | Date Col  | ected: 02.17.2021 18:40 |       |                    |           |     |
| Analytical Me       | thod: Alkalinity by SN | I2320B     |           |                         |       | Prep Method: SM2   | 2320P     |     |
| Tech:               | ALZ                    |            |           |                         |       |                    |           |     |
| Analyst:            | ALZ                    |            | Date Prep | o: 02.23.2021 11:25     |       | % Moisture:        | 20.20     |     |
| Seq Number:         | 3151529                |            |           |                         |       | SUB: 1104/04215-   | 20-39     |     |
| Parameter           |                        | Cas Number | Result    | RL                      | Units | Analysis Date      | Flag      | Dil |
| Alkalinity, Bicarbo | onate (as CaCO3)       | 471-34-1   | 178       | 4.00                    | mg/L  | 02.23.2021 13:26   |           | 1   |

| Analytical Me | thod: Inorganic Anions | by EPA 300/300.1 |            |                  |       | Prep Method: E300   | Р    |     |
|---------------|------------------------|------------------|------------|------------------|-------|---------------------|------|-----|
| Tech:         | CHE                    |                  |            |                  |       | 0/ <b>3 f</b> · · · |      |     |
| Analyst:      | CHE                    |                  | Date Prep: | 02.19.2021 15:15 |       | % Moisture:         |      |     |
| Seq Number:   | 3151337                |                  |            |                  |       |                     |      |     |
| Parameter     |                        | Cas Number       | Result     | RL               | Units | Analysis Date       | Flag | Dil |
| Bromide       |                        | 24959-67-9       | 0.353      | 0.100            | mg/L  | 02.19.2021 16:37    |      | 1   |
| Chloride      |                        | 16887-00-6       | 12.1       | 0.500            | mg/L  | 02.19.2021 16:37    | Х    | 1   |
| Fluoride      |                        | 16984-48-8       | 2.52       | 0.100            | mg/L  | 02.19.2021 16:37    | XF   | 1   |
| Nitrate as N  |                        | 14797-55-8       | 1.75       | 0.100            | mg/L  | 02.19.2021 16:37    |      | 1   |
| Sulfate       |                        | 14808-79-8       | 24.4       | 0.500            | mg/L  | 02.19.2021 16:37    | Х    | 1   |

| Total Dissolved | Solids            | 1642222    | 338    | 5.00 | mg/L  | 02.22.2021 14:34               |       | 1   |
|-----------------|-------------------|------------|--------|------|-------|--------------------------------|-------|-----|
| Parameter       |                   | Cas Number | Result | RL   | Units | Analysis Date                  | Flag  | Dil |
| Seq Number:     | 3151412           |            |        |      |       | 505.1104704215                 | 20-37 |     |
| Analyst:        | DTN               |            |        |      |       | % Moisture:<br>SUB: T104704215 | 20-30 |     |
| Tech:           | DTN               |            |        |      |       |                                |       |     |
| Analytical Me   | ethod: TDS by SM2 | 2540C      |        |      |       |                                |       |     |

| Analytical M | ethod: pH by SM4500-I | H          |        |    |       |                  |       |     |
|--------------|-----------------------|------------|--------|----|-------|------------------|-------|-----|
| Tech:        | ANP                   |            |        |    |       |                  |       |     |
| Analyst:     | ANP                   |            |        |    |       | % Moisture:      | 20.20 |     |
| Seq Number:  | 3151797               |            |        |    |       | SUB: 1104/04215- | 20-39 |     |
| Parameter    |                       | Cas Number | Result | RL | Units | Analysis Date    | Flag  | Dil |
| pH           |                       | 12408-02-5 | 9.18   |    | SU    | 02.25.2021 17:02 | K     | 1   |
| Temperature  |                       | TEMP       | 20.1   |    | Deg C | 02.25.2021 17:02 | Κ     | 1   |



### Straub Corporation, Stanton, TX

Alamito Creek Prod

| Sample Id:    | PR-000492              |                  | Matrix:   | Ground Water              |       | Date Received:02.1 | 9.2021 14: | :04 |
|---------------|------------------------|------------------|-----------|---------------------------|-------|--------------------|------------|-----|
| Lab Sample Id | : 688601-011           |                  | Date Col  | llected: 02.17.2021 18:40 |       |                    |            |     |
| Analytical Me | thod: Recoverable Meta | als by EPA 200.8 |           |                           |       | Prep Method: E200  | ).8P       |     |
| Tech:         | MLI                    |                  |           |                           |       |                    |            |     |
| Analyst:      | DEP                    |                  | Date Pre  | p: 02.24.2021 11:00       |       | % Moisture:        | 20.30      |     |
| Seq Number:   | 3151703                |                  |           |                           |       | SUB. 1104/04213-   | 20-39      |     |
| Parameter     |                        | Cas Number       | Result    | RL                        | Units | Analysis Date      | Flag       | Dil |
| Arsenic       |                        | 7440-38-2        | 0.00881   | 0.00400                   | mg/L  | 02.25.2021 02:51   |            | 1   |
| Silver        |                        | 7440-22-4        | < 0.00200 | 0.00200                   | mg/L  | 02.25.2021 02:51   | U          | 1   |
| Uranium       |                        | 7440-61-1        | 0.0167    | 0.00100                   | mg/L  | 02.25.2021 02:51   |            | 1   |

Analytical Method: Recoverable Metals per ICP by EPA 200.7

MLI

Tech:

| Analyst:    | DEP     |            | Date Prej | p: 02.23.2021 08:30 | )     | % Moisture:<br>SUB: T104704215- | 20-39 |     |
|-------------|---------|------------|-----------|---------------------|-------|---------------------------------|-------|-----|
| Seq Number: | 3151710 |            |           |                     |       |                                 |       |     |
| Parameter   |         | Cas Number | Result    | RL                  | Units | Analysis Date                   | Flag  | Dil |
| Calcium     |         | 7440-70-2  | 0.829     | 0.200               | mg/L  | 02.24.2021 22:50                |       | 1   |
| Iron        |         | 7439-89-6  | < 0.200   | 0.200               | mg/L  | 02.24.2021 22:50                | U     | 1   |
| Magnesium   |         | 7439-95-4  | < 0.200   | 0.200               | mg/L  | 02.24.2021 22:50                | U     | 1   |
| Potassium   |         | 7440-09-7  | < 0.500   | 0.500               | mg/L  | 02.24.2021 22:50                | U     | 1   |
| Silica      |         | 7631-86-9  | 25.9      | 1.07                | mg/L  | 02.24.2021 22:50                |       | 1   |
| Sodium      |         | 7440-23-5  | 120       | 0.500               | mg/L  | 02.24.2021 22:50                |       | 1   |

| Analytical Method:     | Specific Conductance | @25C by SM2510B       |
|------------------------|----------------------|-----------------------|
| i mary fieur triethou. | Specific Conductance | C 25 C 0 y 511125 101 |

| Tech:        | ANP     |            |        |      |          |                  |        |     |
|--------------|---------|------------|--------|------|----------|------------------|--------|-----|
| Analyst:     | ANP     |            |        |      |          | % Moisture:      | 20.20  |     |
| Seq Number:  | 3151442 |            |        |      |          | SUD: 1104704215- | -20-39 |     |
| Parameter    |         | Cas Number | Result | RL   | Units    | Analysis Date    | Flag   | Dil |
| Conductivity |         | COND       | 561    | 10.0 | umhos/cm | 02.22.2021 17:06 |        | 1   |



## Straub Corporation, Stanton, TX

Alamito Creek Prod

| Sample Id:<br>Lab Sample Id | <b>PR-DXW5</b><br>: 688601-012 |            | Matrix: Ground Water<br>Date Collected: 02.18.2021 15:05 |                    |       | Date Received:02.19.2021 14:04<br>Sample Depth: 65. |       |     |
|-----------------------------|--------------------------------|------------|----------------------------------------------------------|--------------------|-------|-----------------------------------------------------|-------|-----|
| Analytical Me               | thod: Alkalinity by SM         | 2320B      |                                                          |                    |       | Prep Method: SM2                                    | 320P  |     |
| Tech:                       | ALZ                            |            |                                                          |                    |       | 0/ Maistana                                         |       |     |
| Analyst:                    | ALZ                            |            | Date Prep                                                | : 02.23.2021 11:25 |       | % Moisture:<br>SUB: T104704215-                     | 20-39 |     |
| Seq Number:                 | 3151529                        |            |                                                          |                    |       | 505.1104704215-                                     | 20-37 |     |
| Parameter                   |                                | Cas Number | Result                                                   | RL                 | Units | Analysis Date                                       | Flag  | Dil |
| Alkalinity, Bicarbo         | onate (as CaCO3)               | 471-34-1   | 293                                                      | 4.00               | mg/L  | 02.23.2021 13:39                                    |       | 1   |

| Analytical Me | thod: Inorganic Anions | by EPA 300/300.1 |            |                  |       | Prep Method: E300 | Р    |     |
|---------------|------------------------|------------------|------------|------------------|-------|-------------------|------|-----|
| Tech:         | CHE                    |                  |            |                  |       |                   |      |     |
| Analyst:      | CHE                    |                  | Date Prep: | 02.19.2021 15:15 |       | % Moisture:       |      |     |
| Seq Number:   | 3151337                |                  |            |                  |       |                   |      |     |
| Parameter     |                        | Cas Number       | Result     | RL               | Units | Analysis Date     | Flag | Dil |
| Bromide       |                        | 24959-67-9       | 0.470      | 0.100            | mg/L  | 02.19.2021 16:45  |      | 1   |
| Chloride      |                        | 16887-00-6       | 17.2       | 0.500            | mg/L  | 02.19.2021 16:45  |      | 1   |
| Fluoride      |                        | 16984-48-8       | 1.71       | 0.100            | mg/L  | 02.19.2021 16:45  |      | 1   |
| Nitrate as N  |                        | 14797-55-8       | 1.12       | 0.100            | mg/L  | 02.19.2021 16:45  |      | 1   |
| Sulfate       |                        | 14808-79-8       | 43.4       | 0.500            | mg/L  | 02.19.2021 16:45  |      | 1   |

| Total Dissolved | Solids           | 1642222    | 331    | 5.00 | mg/L  | 02.22.2021 14:34               |        | 1   |
|-----------------|------------------|------------|--------|------|-------|--------------------------------|--------|-----|
| Parameter       |                  | Cas Number | Result | RL   | Units | Analysis Date                  | Flag   | Dil |
| Seq Number:     | 3151412          |            |        |      |       | SOD. 1104704215                | -20-37 |     |
| Analyst:        | DTN              |            |        |      |       | % Moisture:<br>SUB: T104704215 | 20-30  |     |
| Tech:           | DTN              |            |        |      |       |                                |        |     |
| Analytical Me   | ethod: TDS by SM | 2540C      |        |      |       |                                |        |     |

| Analytical Me | ethod: pH by SM4500-H |            |        |    |       |                  |       |     |
|---------------|-----------------------|------------|--------|----|-------|------------------|-------|-----|
| Tech:         | ANP                   |            |        |    |       |                  |       |     |
| Analyst:      | ANP                   |            |        |    |       | % Moisture:      | 20.20 |     |
| Seq Number:   | 3151797               |            |        |    |       | SUB. 1104/04213- | 20-39 |     |
| Parameter     |                       | Cas Number | Result | RL | Units | Analysis Date    | Flag  | Dil |
| pH            |                       | 12408-02-5 | 8.50   |    | SU    | 02.25.2021 17:02 | K     | 1   |
| Temperature   |                       | TEMP       | 20.0   |    | Deg C | 02.25.2021 17:02 | Κ     | 1   |



### Straub Corporation, Stanton, TX

Alamito Creek Prod

| Sample Id:    | PR-DXW5                | Matrix: Ground Water |                                  |                     | Date Received:02.19.2021 14:04 |                   |       |     |  |
|---------------|------------------------|----------------------|----------------------------------|---------------------|--------------------------------|-------------------|-------|-----|--|
| Lab Sample Id | l: 688601-012          |                      | Date Collected: 02.18.2021 15:05 |                     |                                | Sample Depth: 65. |       |     |  |
| Analytical Me | thod: Recoverable Meta | als by EPA 200.8     |                                  |                     |                                | Prep Method: E200 | ).8P  |     |  |
| Tech:         | MLI                    |                      |                                  |                     |                                |                   |       |     |  |
| Analyst:      | DEP                    |                      | Date Pre                         | p: 02.24.2021 11:00 |                                | % Moisture:       | 20.30 |     |  |
| Seq Number:   | 3151703                |                      |                                  |                     |                                | SOD. 1104/04213-  | 20-39 |     |  |
| Parameter     |                        | Cas Number           | Result                           | RL                  | Units                          | Analysis Date     | Flag  | Dil |  |
| Arsenic       |                        | 7440-38-2            | < 0.00400                        | 0.00400             | mg/L                           | 02.25.2021 02:55  | U     | 1   |  |
| Silver        |                        | 7440-22-4            | < 0.00200                        | 0.00200             | mg/L                           | 02.25.2021 02:55  | U     | 1   |  |
| Uranium       |                        | 7440-61-1            | 0.0338                           | 0.00100             | mg/L                           | 02.25.2021 02:55  |       | 1   |  |

Analytical Method: Recoverable Metals per ICP by EPA 200.7

MLI

Tech:

| Analyst: DEP        |  |            | Date Prep: 02.23 |       |       | 2021 08:30 % Moisture:<br>SUB: T104704215-20-39 |       |     |  |  |  |
|---------------------|--|------------|------------------|-------|-------|-------------------------------------------------|-------|-----|--|--|--|
| Seq Number: 3151710 |  |            |                  |       |       | 565.1104704215                                  | 20 37 |     |  |  |  |
| Parameter           |  | Cas Number | Result           | RL    | Units | Analysis Date                                   | Flag  | Dil |  |  |  |
| Calcium             |  | 7440-70-2  | 31.1             | 0.200 | mg/L  | 02.24.2021 22:54                                |       | 1   |  |  |  |
| Iron                |  | 7439-89-6  | < 0.200          | 0.200 | mg/L  | 02.24.2021 22:54                                | U     | 1   |  |  |  |
| Magnesium           |  | 7439-95-4  | 0.248            | 0.200 | mg/L  | 02.24.2021 22:54                                |       | 1   |  |  |  |
| Potassium           |  | 7440-09-7  | 1.11             | 0.500 | mg/L  | 02.24.2021 22:54                                |       | 1   |  |  |  |
| Silica              |  | 7631-86-9  | 39.6             | 1.07  | mg/L  | 02.24.2021 22:54                                |       | 1   |  |  |  |
| Sodium              |  | 7440-23-5  | 131              | 0.500 | mg/L  | 02.24.2021 22:54                                |       | 1   |  |  |  |
|                     |  |            |                  |       |       |                                                 |       |     |  |  |  |

| Analytical Method  | Specific Conductance | @25C by SM2510B  |
|--------------------|----------------------|------------------|
| Analytical Methou. | specific Conductance | @25C by SW12510E |

| Conductivity |         | COND       | 753    | 10.0 | umhos/cm | 02.22.2021 17:06               |        | 1   |
|--------------|---------|------------|--------|------|----------|--------------------------------|--------|-----|
| Parameter    |         | Cas Number | Result | RL   | Units    | Analysis Date                  | Flag   | Dil |
| Seq Number:  | 3151442 |            |        |      |          | 30D. 1104704213                | -20-37 |     |
| Analyst:     | ANP     |            |        |      |          | % Moisture:<br>SUB: T104704215 | 20-30  |     |
| Tech:        | ANP     |            |        |      |          |                                |        |     |



## Straub Corporation, Stanton, TX

Alamito Creek Prod

| Sample Id: <b>PR-DXW1</b> Lab Sample Id:688601-013 |                        |            | Matrix: Ground Water<br>Date Collected: 02.18.2021 16:06 |                    |       | Date Received:02.19.2021 14:04<br>Sample Depth: 42 |       |     |  |
|----------------------------------------------------|------------------------|------------|----------------------------------------------------------|--------------------|-------|----------------------------------------------------|-------|-----|--|
| Analytical Me                                      | thod: Alkalinity by SM | 2320B      |                                                          |                    |       | Prep Method: SM2                                   | .320P |     |  |
| Tech:<br>Analyst:                                  | ALZ<br>ALZ             |            | Date Prep                                                | : 02.23.2021 11:25 |       | % Moisture:<br>SUB: T104704215-                    | 20-39 |     |  |
| Seq Number:                                        | 3151529                |            |                                                          |                    |       |                                                    |       |     |  |
| Parameter                                          |                        | Cas Number | Result                                                   | RL                 | Units | Analysis Date                                      | Flag  | Dil |  |
| Alkalinity, Bicarbo                                | onate (as CaCO3)       | 471-34-1   | 315                                                      | 4.00               | mg/L  | 02.23.2021 13:47                                   |       | 1   |  |

| Analytical Me | thod: Inorganic Anions | by EPA 300/300.1 |            |                  |       | Prep Method: E300 | Р    |     |
|---------------|------------------------|------------------|------------|------------------|-------|-------------------|------|-----|
| Tech: CHE     |                        |                  |            |                  |       |                   |      |     |
| Analyst:      | CHE                    |                  | Date Prep: | 02.19.2021 15:15 |       | % Moisture:       |      |     |
| Seq Number:   | 3151337                |                  |            |                  |       |                   |      |     |
| Parameter     |                        | Cas Number       | Result     | RL               | Units | Analysis Date     | Flag | Dil |
| Bromide       |                        | 24959-67-9       | 0.323      | 0.100            | mg/L  | 02.19.2021 16:54  |      | 1   |
| Chloride      |                        | 16887-00-6       | 6.50       | 0.500            | mg/L  | 02.19.2021 16:54  |      | 1   |
| Fluoride      |                        | 16984-48-8       | 0.938      | 0.100            | mg/L  | 02.19.2021 16:54  |      | 1   |
| Nitrate as N  |                        | 14797-55-8       | 0.234      | 0.100            | mg/L  | 02.19.2021 16:54  |      | 1   |
| Sulfate       |                        | 14808-79-8       | 14.2       | 0.500            | mg/L  | 02.19.2021 16:54  |      | 1   |

| Total Dissolved | Solids                            | 1642222    | 289    | 5.00 | mg/L  | 02.22.2021 14:34               |       | 1   |  |  |  |
|-----------------|-----------------------------------|------------|--------|------|-------|--------------------------------|-------|-----|--|--|--|
| Parameter       |                                   | Cas Number | Result | RL   | Units | Analysis Date                  | Flag  | Dil |  |  |  |
| Seq Number:     | 3151412                           |            |        |      |       | SOD. 1104704215                | 20-37 |     |  |  |  |
| Analyst:        | DTN                               |            |        |      |       | % Moisture:<br>SUB: T104704215 | 20-30 |     |  |  |  |
| Tech:           | DTN                               |            |        |      |       |                                |       |     |  |  |  |
| Analytical Me   | Analytical Method: TDS by SM2540C |            |        |      |       |                                |       |     |  |  |  |

| Analytical M | ethod: pH by SM450 | 0-Н        |        |    |                       |                  |       |     |  |  |
|--------------|--------------------|------------|--------|----|-----------------------|------------------|-------|-----|--|--|
| Tech:        | ANP                |            |        |    |                       |                  |       |     |  |  |
| Analyst:     | ANP                |            |        |    |                       | % Moisture:      | 20.20 |     |  |  |
| Seq Number:  | 3151797            |            |        |    | SUB: 1104/04215-20-39 |                  |       |     |  |  |
| Parameter    |                    | Cas Number | Result | RL | Units                 | Analysis Date    | Flag  | Dil |  |  |
| pH           |                    | 12408-02-5 | 7.99   |    | SU                    | 02.25.2021 17:02 | K     | 1   |  |  |
| Temperature  |                    | TEMP       | 20.2   |    | Deg C                 | 02.25.2021 17:02 | Κ     | 1   |  |  |



### Straub Corporation, Stanton, TX

Alamito Creek Prod

| Sample Id:                                         | PR-DXW1       | Matrix: Ground Water |           |                           | Date Received:02.19.2021 14:04 |                   |       |     |  |
|----------------------------------------------------|---------------|----------------------|-----------|---------------------------|--------------------------------|-------------------|-------|-----|--|
| Lab Sample Id                                      | l: 688601-013 |                      | Date Col  | llected: 02.18.2021 16:06 |                                | Sample Depth: 42  |       |     |  |
| Analytical Method: Recoverable Metals by EPA 200.8 |               |                      |           |                           |                                | Prep Method: E200 | ).8P  |     |  |
| Tech:                                              | MLI           |                      |           |                           |                                |                   |       |     |  |
| Analyst:                                           | DEP           |                      | Date Pre  | p: 02.24.2021 11:00       |                                | % Moisture:       | 20.20 |     |  |
| Seq Number:                                        | 3151703       |                      |           |                           |                                | SUB. 1104/04213-  | 20-39 |     |  |
| Parameter                                          |               | Cas Number           | Result    | RL                        | Units                          | Analysis Date     | Flag  | Dil |  |
| Arsenic                                            |               | 7440-38-2            | < 0.00400 | 0.00400                   | mg/L                           | 02.25.2021 02:57  | U     | 1   |  |
| Silver                                             |               | 7440-22-4            | < 0.00200 | 0.00200                   | mg/L                           | 02.25.2021 02:57  | U     | 1   |  |
| Uranium                                            |               | 7440-61-1            | 0.00665   | 0.00100                   | mg/L                           | 02.25.2021 02:57  |       | 1   |  |

Analytical Method: Recoverable Metals per ICP by EPA 200.7

MLI

Tech:

| Analyst: DEP        |  |            | Date Prep | : 0   | 2.23.2021 08:30 | % Moisture:<br>SUB: T104704215-20-39 |             |      |     |  |
|---------------------|--|------------|-----------|-------|-----------------|--------------------------------------|-------------|------|-----|--|
| Seq Number: 3151710 |  |            |           |       | 565.1           | 104704215                            | 20 37       |      |     |  |
| Parameter           |  | Cas Number | Result    | RL    | Units           | Ana                                  | alysis Date | Flag | Dil |  |
| Calcium             |  | 7440-70-2  | 71.3      | 0.200 | ) mg/L          | 02.24                                | .2021 22:59 |      | 1   |  |
| Iron                |  | 7439-89-6  | < 0.200   | 0.200 | ) mg/L          | 02.24                                | .2021 22:59 | U    | 1   |  |
| Magnesium           |  | 7439-95-4  | 17.1      | 0.200 | ) mg/L          | 02.24                                | .2021 22:59 |      | 1   |  |
| Potassium           |  | 7440-09-7  | 1.11      | 0.500 | ) mg/L          | 02.24                                | .2021 22:59 |      | 1   |  |
| Silica              |  | 7631-86-9  | 57.2      | 1.07  | mg/L            | 02.24                                | .2021 22:59 |      | 1   |  |
| Sodium              |  | 7440-23-5  | 40.7      | 0.500 | ) mg/L          | 02.24                                | .2021 22:59 |      | 1   |  |
|                     |  |            |           |       |                 |                                      |             |      |     |  |

| Analytical Method:   | Specific Conductance | @25C by SM2510B       |
|----------------------|----------------------|-----------------------|
| i mary fieur method. | Speemie Conductance  | C 25 C 0 y 511125 102 |

| Conductivity |         | COND       | 657    | 10.0 | umhos/cm | 02.22.2021 17:06                |        | 1   |
|--------------|---------|------------|--------|------|----------|---------------------------------|--------|-----|
| Parameter    |         | Cas Number | Result | RL   | Units    | Analysis Date                   | Flag   | Dil |
| Seq Number:  | 3151442 |            |        |      |          | 565.1104704215                  | -20-37 |     |
| Analyst:     | ANP     |            |        |      |          | % Moisture:<br>SUB: T104704215. | 20-39  |     |
| Tech:        | ANP     |            |        |      |          |                                 |        |     |



# **Flagging Criteria**

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

\*\* Surrogate recovered outside laboratory control limit.

| BRL  | Below Reporting Limit.         | ND Not Detected.   |                 |                             |                                 |
|------|--------------------------------|--------------------|-----------------|-----------------------------|---------------------------------|
| RL   | Reporting Limit                |                    |                 |                             |                                 |
| MDL  | Method Detection Limit         | SDL Sample Dete    | ection Limit    | LOD Limit of Detection      |                                 |
| PQL  | Practical Quantitation Limit   | MQL Method Qua     | ntitation Limit | LOQ Limit of Quantitation   | n                               |
| DL   | Method Detection Limit         |                    |                 |                             |                                 |
| NC   | Non-Calculable                 |                    |                 |                             |                                 |
| SMP  | Client Sample                  |                    | BLK             | Method Blank                |                                 |
| BKS/ | LCS Blank Spike/Laboratory     | Control Sample     | BKSD/LCSD       | Blank Spike Duplicate/Labor | ratory Control Sample Duplicate |
| MD/S | <b>D</b> Method Duplicate/Samp | le Duplicate       | MS              | Matrix Spike                | MSD: Matrix Spike Duplicate     |
| + NE | ELAC certification not offered | for this compound. |                 |                             |                                 |

\* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

| eurofins Environme            | ent Testing           | QC Su         | mmary       | 688601  |      |              |        |                  |      |
|-------------------------------|-----------------------|---------------|-------------|---------|------|--------------|--------|------------------|------|
|                               |                       | Stra          | ub Corpo    | oration |      |              |        |                  |      |
|                               |                       | Ala           | amito Creek | c Prod  |      |              |        |                  |      |
| Analytical Method:            | Alkalinity by SM2320B |               |             |         | Pı   | rep Metho    | l: SM  | 2320P            |      |
| Seq Number:                   | 3151529               | Matrix:       | Water       |         |      | Date Prej    | p: 02. | 23.2021          |      |
|                               |                       | MB Sample Id: | 7721814-1-E | BLK     |      |              |        |                  |      |
| Parameter                     |                       | MB<br>Result  |             |         |      |              | Units  | Analysis<br>Date | Flag |
| Alkalinity, Bicarbonate (as C | laCO3)                | <4.00         |             |         |      |              | mg/L   | 02.23.2021 11:40 |      |
| Analytical Method:            | Alkalinity by SM2320B |               |             |         | Pı   | rep Metho    | l: SM  | 2320P            |      |
| Seq Number:                   | 3151529               | Matrix:       | Ground Wate | er      |      | Date Prej    | p: 02. | 23.2021          |      |
| Parent Sample Id:             | 688601-001            | MD Sample Id: | 688601-001  | D       |      |              |        |                  |      |
| Parameter                     | Parent<br>Result      | MD<br>Result  |             |         | %RPD | RPD<br>Limit | Units  | Analysis<br>Date | Flag |
| Alkalinity, Bicarbonate (as C | CaCO3) 194            | 190           |             |         | 2    | 20           | mg/L   | 02.23.2021 12:07 |      |
| Analytical Method:            | Alkalinity by SM2320B |               |             |         | Pı   | rep Metho    | l: SM  | 2320P            |      |
| Seq Number:                   | 3151529               | Matrix:       | Ground Wat  | er      |      | Date Prej    | p: 02. | 23.2021          |      |
| Parent Sample Id:             | 688601-011            | MD Sample Id: | 688601-011  | D       |      |              |        |                  |      |
| Parameter                     | Parent<br>Result      | MD<br>Result  |             |         | %RPD | RPD<br>Limit | Units  | Analysis<br>Date | Flag |
| Alkalinity, Bicarbonate (as C | aCO3) 178             | 183           |             |         | 3    | 20           | mg/L   | 02.23.2021 13:33 |      |

**QC Summary** 

688601

| Analytical Method:          | Inorganic Anions b | y EPA 300       | /300.1                       |             |                       |              |        | Pr                            | ep Meth      | od: E30 | 0P               |      |  |
|-----------------------------|--------------------|-----------------|------------------------------|-------------|-----------------------|--------------|--------|-------------------------------|--------------|---------|------------------|------|--|
| Seq Number:                 | 3151337            |                 |                              |             | Date Prep: 02.19.2021 |              |        |                               |              |         |                  |      |  |
| MB Sample Id: 7721618-1-BLK |                    |                 | LCS Sample Id: 7721618-1-BKS |             |                       |              |        | LCSD Sample Id: 7721618-1-BSD |              |         |                  |      |  |
| Parameter                   | MB<br>Result       | Spike<br>Amount | LCS<br>Result                | LCS<br>%Rec | LCSD<br>Result        | LCSD<br>%Rec | Limits | %RPD                          | RPD<br>Limit | Units   | Analysis<br>Date | Flag |  |
| Bromide                     | < 0.100            | 5.00            | 4.93                         | 99          | 4.69                  | 94           | 90-110 | 5                             | 20           | mg/L    | 02.19.2021 15:45 |      |  |
| Chloride                    | < 0.500            | 25.0            | 24.7                         | 99          | 24.3                  | 97           | 90-110 | 2                             | 20           | mg/L    | 02.19.2021 15:45 |      |  |
| Fluoride                    | < 0.100            | 5.00            | 4.62                         | 92          | 4.51                  | 90           | 90-110 | 2                             | 20           | mg/L    | 02.19.2021 15:45 |      |  |
| Nitrate as N                | < 0.100            | 5.00            | 4.94                         | 99          | 4.93                  | 99           | 90-110 | 0                             | 20           | mg/L    | 02.19.2021 15:45 |      |  |
| Sulfate                     | < 0.500            | 25.0            | 24.7                         | 99          | 24.6                  | 98           | 90-110 | 0                             | 20           | mg/L    | 02.19.2021 15:45 |      |  |

| Analytical Method: | Inorganic A | nions by         | 7 EPA 300/3     | 300.1        |            |               |             |        | Pr   | ep Meth      | od: E30   | 0P               |      |
|--------------------|-------------|------------------|-----------------|--------------|------------|---------------|-------------|--------|------|--------------|-----------|------------------|------|
| Seq Number:        | 3151337     |                  |                 | ]            | Matrix:    | Ground W      | ater        |        |      | Date Pr      | ep: 02.1  | 9.2021           |      |
| Parent Sample Id:  | 688601-001  |                  |                 | MS San       | nple Id:   | 688601-00     | 01 S        |        | MSI  | O Sampl      | e Id: 688 | 601-001 SD       |      |
| Parameter          |             | Parent<br>Result | Spike<br>Amount | MS<br>Result | MS<br>%Rec | MSD<br>Result | MSD<br>%Rec | Limits | %RPD | RPD<br>Limit | Units     | Analysis<br>Date | Flag |
| Bromide            |             | 0.488            | 25.0            | 26.0         | 102        | 123           | 490         | 90-110 | 130  | 20           | mg/L      | 02.19.2021 16:11 | XF   |
| Chloride           |             | 16.3             | 125             | 155          | 111        | 147           | 105         | 90-110 | 5    | 20           | mg/L      | 02.19.2021 16:11 | Х    |
| Fluoride           |             | 1.89             | 25.0            | 28.6         | 107        | 18.6          | 67          | 90-110 | 42   | 20           | mg/L      | 02.19.2021 16:11 | XF   |
| Nitrate as N       |             | 2.65             | 25.0            | 28.5         | 103        | 28.4          | 103         | 90-110 | 0    | 20           | mg/L      | 02.19.2021 16:11 |      |
| Sulfate            |             | 35.2             | 125             | 168          | 106        | 164           | 103         | 90-110 | 2    | 20           | mg/L      | 02.19.2021 16:11 |      |

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec



### QC Summary 688601

### **Straub Corporation**

Alamito Creek Prod

| Analytical Method: | Inorganic A | 300.1            |                 |              |            |               | Pr          | ep Metho | od: E30 | 0P           |           |                  |      |
|--------------------|-------------|------------------|-----------------|--------------|------------|---------------|-------------|----------|---------|--------------|-----------|------------------|------|
| Seq Number:        | 3151337     |                  |                 |              | Matrix:    | Ground W      | ater        |          |         | Date Pr      | ep: 02.1  | 19.2021          |      |
| Parent Sample Id:  | 688601-011  |                  |                 | MS Sar       | nple Id:   | 688601-01     | 1 S         |          | MS      | D Sample     | e Id: 688 | 601-011 SD       |      |
| Parameter          |             | Parent<br>Result | Spike<br>Amount | MS<br>Result | MS<br>%Rec | MSD<br>Result | MSD<br>%Rec | Limits   | %RPD    | RPD<br>Limit | Units     | Analysis<br>Date | Flag |
| Bromide            |             | 0.353            | 25.0            | 27.9         | 110        | 26.4          | 104         | 90-110   | 6       | 20           | mg/L      | 02.19.2021 19:05 |      |
| Chloride           |             | 12.1             | 125             | 155          | 114        | 150           | 110         | 90-110   | 3       | 20           | mg/L      | 02.19.2021 19:05 | Х    |
| Fluoride           |             | 2.52             | 25.0            | 31.1         | 114        | 20.0          | 70          | 90-110   | 43      | 20           | mg/L      | 02.19.2021 19:05 | XF   |
| Nitrate as N       |             | 1.75             | 25.0            | 29.3         | 110        | 29.1          | 109         | 90-110   | 1       | 20           | mg/L      | 02.19.2021 19:05 |      |
| Sulfate            |             | 24.4             | 125             | 164          | 112        | 161           | 109         | 90-110   | 2       | 20           | mg/L      | 02.19.2021 19:05 | Х    |

| Analytical Method:<br>Seq Number:<br>MB Sample Id:            | <b>TDS by SM2540C</b><br>3151412<br>3151412-1-BLK |                 | N<br>LCS Sam  | Matrix:<br>ple Id: | Water<br>3151412-1    | -BKS          |        | LCSI | O Sample     | e Id: 315 | 1412-1-BSD       |      |
|---------------------------------------------------------------|---------------------------------------------------|-----------------|---------------|--------------------|-----------------------|---------------|--------|------|--------------|-----------|------------------|------|
| Parameter                                                     | MB<br>Result                                      | Spike<br>Amount | LCS<br>Result | LCS<br>%Rec        | LCSD<br>Result        | LCSD<br>%Rec  | Limits | %RPD | RPD<br>Limit | Units     | Analysis<br>Date | Flag |
| Total Dissolved Solids                                        | <5.00                                             | 1000            | 974           | 97                 | 988                   | 99            | 80-120 | 1    | 10           | mg/L      | 02.22.2021 14:34 |      |
| <b>Analytical Method:</b><br>Seq Number:<br>Parent Sample Id: | <b>TDS by SM2540C</b> 3151412 688601-001          |                 | N<br>MD Sam   | Matrix:            | Ground W<br>688601-00 | ′ater<br>)1 D |        |      |              |           |                  |      |
| Parameter                                                     | Parent<br>Result                                  |                 | MD<br>Result  | r                  |                       |               |        | %RPD | RPD<br>Limit | Units     | Analysis<br>Date | Flag |
| Total Dissolved Solids                                        | 280                                               |                 | 261           |                    |                       |               |        | 7    | 10           | mg/L      | 02.22.2021 14:34 |      |
| <b>Analytical Method:</b><br>Seq Number:<br>Parent Sample Id: | <b>TDS by SM2540C</b> 3151412 688601-011          |                 | N<br>MD Sam   | Matrix:<br>ple Id: | Ground W<br>688601-01 | ater          |        |      |              |           |                  |      |
| Parameter                                                     | Parent<br>Result                                  |                 | MD<br>Result  |                    |                       |               |        | %RPD | RPD<br>Limit | Units     | Analysis<br>Date | Flag |
| Total Dissolved Solids                                        | 338                                               |                 | 313           |                    |                       |               |        | 8    | 10           | mg/L      | 02.22.2021 14:34 |      |
| Analytical Method:                                            | рН by SM4500-Н                                    |                 |               |                    |                       |               |        |      |              |           |                  |      |

| Seq Number:       | 3151797          | Matrix:       | Ground Water |        |              |             |                                      |      |
|-------------------|------------------|---------------|--------------|--------|--------------|-------------|--------------------------------------|------|
| Parent Sample Id: | 688601-001       | MD Sample Id: | 688601-001 D |        |              |             |                                      |      |
| Parameter         | Parent<br>Result | MD<br>Result  |              | %RPD   | RPD<br>Limit | Units       | Analysis<br>Date                     | Flag |
| pH<br>Temperature | 8.52<br>19.9     | 8.59<br>19.9  |              | 1<br>0 | 20<br>20     | SU<br>Deg C | 02.25.2021 17:02<br>02.25.2021 17:02 |      |
|                   |                  |               |              |        |              |             |                                      |      |

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference  $LCS = Laboratory \ Control \ Sample \\ A = Parent \ Result \\ C = MS/LCS \ Result \\ E = MSD/LCSD \ Result$ 

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

### **Straub Corporation**

Alamito Creek Prod

| Analytical Method: | рН by SM4500-Н |
|--------------------|----------------|
|--------------------|----------------|

**Environment Testing** 

Xenco

🔅 eurofins

| Seq Number:       | 3151797          | Matrix:       | Ground Water |              |       |                  |      |
|-------------------|------------------|---------------|--------------|--------------|-------|------------------|------|
| Parent Sample Id: | 688601-011       | MD Sample Id: | 688601-011 D |              |       |                  |      |
| Parameter         | Parent<br>Result | MD<br>Result  | %RPD         | RPD<br>Limit | Units | Analysis<br>Date | Flag |
| pH                | 9.18             | 9.28          | 1            | 20           | SU    | 02.25.2021 17:02 |      |
| Temperature       | 20.1             | 20.2          | 0            | 20           | Deg C | 02.25.2021 17:02 |      |

| Analytical Method:          | <b>Recoverable Metals</b> | by EPA 2        | 00.8                         |             |                |                               |                       | Pr   | ep Metho     | od: E20 | 0.8P             |      |
|-----------------------------|---------------------------|-----------------|------------------------------|-------------|----------------|-------------------------------|-----------------------|------|--------------|---------|------------------|------|
| Seq Number:                 | 3151703                   |                 | ]                            | Matrix:     | Water          |                               | Date Prep: 02.24.2021 |      |              |         |                  |      |
| MB Sample Id: 7721883-1-BLK |                           |                 | LCS Sample Id: 7721883-1-BKS |             |                | LCSD Sample Id: 7721883-1-BSD |                       |      |              |         |                  |      |
| Parameter                   | MB<br>Result              | Spike<br>Amount | LCS<br>Result                | LCS<br>%Rec | LCSD<br>Result | LCSD<br>%Rec                  | Limits                | %RPD | RPD<br>Limit | Units   | Analysis<br>Date | Flag |
| Arsenic                     | < 0.00400                 | 0.100           | 0.0963                       | 96          | 0.0960         | 96                            | 85-115                | 0    | 20           | mg/L    | 02.25.2021 01:46 |      |
| Silver                      | < 0.00200                 | 0.0500          | 0.0509                       | 102         | 0.0508         | 102                           | 85-115                | 0    | 20           | mg/L    | 02.25.2021 01:46 |      |
| Uranium                     | < 0.00100                 | 0.0250          | 0.0234                       | 94          | 0.0234         | 94                            | 85-115                | 0    | 20           | mg/L    | 02.25.2021 01:46 |      |

| <b>Analytical Method:</b><br>Sea Number: | 0.8              | Matrix:         | Water                      |            |               | Pr          | ep Metho<br>Date Pro | od: E20<br>en: 02.2          | 0.8P<br>24.2021 |       |                  |      |
|------------------------------------------|------------------|-----------------|----------------------------|------------|---------------|-------------|----------------------|------------------------------|-----------------|-------|------------------|------|
| Parent Sample Id: 686151-001             |                  |                 | MS Sample Id: 686151-001 S |            |               |             |                      | MSD Sample Id: 686151-001 SD |                 |       |                  |      |
| Parameter                                | Parent<br>Result | Spike<br>Amount | MS<br>Result               | MS<br>%Rec | MSD<br>Result | MSD<br>%Rec | Limits               | %RPD                         | RPD<br>Limit    | Units | Analysis<br>Date | Flag |
| Arsenic                                  | 0.00605          | 0.100           | 0.108                      | 102        | 0.106         | 100         | 85-115               | 2                            | 20              | mg/L  | 02.25.2021 01:55 |      |
| Silver                                   | < 0.00200        | 0.0500          | 0.0481                     | 96         | 0.0465        | 93          | 85-115               | 3                            | 20              | mg/L  | 02.25.2021 01:55 |      |
| Uranium                                  | 0.0116           | 0.0250          | 0.0384                     | 107        | 0.0377        | 104         | 85-115               | 2                            | 20              | mg/L  | 02.25.2021 01:55 |      |

| Analytical Method: | <b>Recoverable Metals</b> | by EPA 20       | 0.8          |            |              | Prep Method: E200.8P |                     |      |  |  |
|--------------------|---------------------------|-----------------|--------------|------------|--------------|----------------------|---------------------|------|--|--|
| Seq Number:        | 3151703                   |                 | 1            | Matrix:    | Ground Water | Date Prep: 0         | 02.24.2021          |      |  |  |
| Parent Sample Id:  | 688601-010                |                 | MS San       | nple Id:   | 688601-010 S |                      |                     |      |  |  |
| Parameter          | Parent<br>Result          | Spike<br>Amount | MS<br>Result | MS<br>%Rec | Limits       | Uni                  | ts Analysis<br>Date | Flag |  |  |
| Arsenic            | 0.00445                   | 0.100           | 0.103        | 99         | 85-115       | mg/                  | /L 02.25.2021 02:49 |      |  |  |
| Silver             | < 0.00200                 | 0.0500          | 0.0524       | 105        | 85-115       | mg/                  | /L 02.25.2021 02:49 |      |  |  |
| Uranium            | 0.0221                    | 0.0250          | 0.0498       | 111        | 85-115       | mg/                  | /L 02.25.2021 02:49 |      |  |  |

| Analytical Method: | <b>Recoverable Metals</b> | per ICP b       | y EPA 20      | 0.7         |                |              |        | Pr   | ep Metho     | od: I | E2 |
|--------------------|---------------------------|-----------------|---------------|-------------|----------------|--------------|--------|------|--------------|-------|----|
| Seq Number:        | 3151710                   |                 |               | Matrix:     | Water          |              |        |      | Date Pre     | ep: ( | 02 |
| MB Sample Id:      | 7721811-1-BLK             |                 | LCS Sar       | nple Id:    | 7721811-       | 1-BKS        |        | LCSI | D Sample     | Id:   | 77 |
| Parameter          | MB<br>Result              | Spike<br>Amount | LCS<br>Result | LCS<br>%Rec | LCSD<br>Result | LCSD<br>%Rec | Limits | %RPD | RPD<br>Limit | Uni   | ts |
| Calcium            | < 0.200                   | 25.0            | 24.3          | 97          | 24.3           | 97           | 85-115 | 0    | 20           | mg/   | /L |

4.99

| Magnesium | < 0.200 | 25.0 | 24.5 | 98  | 24.5 |
|-----------|---------|------|------|-----|------|
| Potassium | < 0.500 | 10.0 | 9.87 | 99  | 9.85 |
| Silica    | <1.07   | 21.4 | 21.4 | 100 | 21.5 |
| Sodium    | < 0.500 | 25.0 | 24.1 | 96  | 24.1 |
|           |         |      |      |     |      |

< 0.200

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

Iron

[D] = 100\*(C-A) / B

5.00

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result

0

0

0

0

0

20

20

20

20

20

MS = Matrix Spike B = Spike AddedD = MSD/LCSD % Rec

E200.7P

mg/L

mg/L

mg/L

mg/L

mg/L

02.23.2021

7721811-1-BSD

Analysis

Date

02.24.2021 19:41

02.24.2021 19:41

02.24.2021 19:41

02.24.2021 19:41

02.24.2021 19:41

02.24.2021 19:41

Flag

Page 40 of 50

100

4.99

100 85-115

100 85-115

96 85-115

85-115

85-115

98

99



### QC Summary 688601

### **Straub Corporation**

Alamito Creek Prod

| Analytical Method: | <b>Recoverable</b> M | letals p      | per ICP by      | EPA 200      | .7         |               |             |        | Prep Method: E200.7P |              |         |                  |      |
|--------------------|----------------------|---------------|-----------------|--------------|------------|---------------|-------------|--------|----------------------|--------------|---------|------------------|------|
| Seq Number:        | 3151710              |               |                 | 1            | Matrix:    | Water         |             |        |                      | Date Pre     | p: 02.2 | 3.2021           |      |
| Parent Sample Id:  | 688679-001           |               |                 | MS San       | nple Id:   | 688679-00     | 1 S         |        | MSI                  | O Sample     | Id: 688 | 679-001 SD       |      |
| Parameter          | Pai<br>Re            | rent<br>esult | Spike<br>Amount | MS<br>Result | MS<br>%Rec | MSD<br>Result | MSD<br>%Rec | Limits | %RPD                 | RPD<br>Limit | Units   | Analysis<br>Date | Flag |
| Calcium            |                      | 34.8          | 25.0            | 60.2         | 102        | 60.1          | 101         | 70-130 | 0                    | 20           | mg/L    | 02.24.2021 19:53 |      |
| Iron               |                      | 1.59          | 5.00            | 6.88         | 106        | 6.89          | 106         | 70-130 | 0                    | 20           | mg/L    | 02.24.2021 19:53 |      |
| Magnesium          |                      | 4.64          | 25.0            | 30.7         | 104        | 30.7          | 104         | 70-130 | 0                    | 20           | mg/L    | 02.24.2021 19:53 |      |
| Potassium          |                      | 117           | 10.0            | 126          | 90         | 126           | 90          | 70-130 | 0                    | 20           | mg/L    | 02.24.2021 19:53 |      |
| Silica             |                      | 22.5          | 21.4            | 46.6         | 113        | 46.7          | 113         | 70-130 | 0                    | 20           | mg/L    | 02.24.2021 19:53 |      |
| Sodium             |                      | 112           | 25.0            | 136          | 96         | 136           | 96          | 70-130 | 0                    | 20           | mg/L    | 02.24.2021 19:53 |      |

| Analytical Method:Recoverable Metals per ICP toSeq Number:3151710Description600001 010 |                  | s per ICP b     | y EPA 200    | 0 <b>.7</b><br>Matrix: | Ground Water | Prep Method: E20<br>Date Prep: 02.2 | 0.7P<br>23.2021  |      |
|----------------------------------------------------------------------------------------|------------------|-----------------|--------------|------------------------|--------------|-------------------------------------|------------------|------|
| Parent Sample Id:                                                                      | 688601-010       |                 | MS Sar       | nple Id:               | 688601-010 S |                                     |                  |      |
| Parameter                                                                              | Parent<br>Result | Spike<br>Amount | MS<br>Result | MS<br>%Rec             | Limits       | Units                               | Analysis<br>Date | Flag |
| Calcium                                                                                | 60.9             | 25.0            | 87.5         | 106                    | 70-130       | mg/L                                | 02.24.2021 22:46 |      |
| Iron                                                                                   | 0.221            | 5.00            | 5.61         | 108                    | 70-130       | mg/L                                | 02.24.2021 22:46 |      |
| Magnesium                                                                              | 4.72             | 25.0            | 31.4         | 107                    | 70-130       | mg/L                                | 02.24.2021 22:46 |      |
| Potassium                                                                              | 3.86             | 10.0            | 14.7         | 108                    | 70-130       | mg/L                                | 02.24.2021 22:46 |      |
| Silica                                                                                 | 42.4             | 21.4            | 67.2         | 116                    | 70-130       | mg/L                                | 02.24.2021 22:46 |      |
| Sodium                                                                                 | 106              | 25.0            | 134          | 112                    | 70-130       | mg/L                                | 02.24.2021 22:46 |      |

#### Analytical Method: Specific Conductance @25C by SM2510B

| Seq Number:   | 3151442       |                 | 1             | Matrix:     | Water          |              |        |      |              |            |                  |      |
|---------------|---------------|-----------------|---------------|-------------|----------------|--------------|--------|------|--------------|------------|------------------|------|
| MB Sample Id: | 3151442-1-BLK |                 | LCS San       | nple Id:    | 3151442-1      | -BKS         |        | LCSI | O Sampl      | e Id: 3151 | 1442-1-BSD       |      |
| Parameter     | MB<br>Result  | Spike<br>Amount | LCS<br>Result | LCS<br>%Rec | LCSD<br>Result | LCSD<br>%Rec | Limits | %RPD | RPD<br>Limit | Units      | Analysis<br>Date | Flag |
| Conductivity  | <10.0         | 1410            | 1410          | 100         | 1410           | 100          | 80-120 | 0    | 20           | umhos/cm   | 02.22.2021 17:06 |      |

| Analytical Method: | Specific Conduct | ance @25C by SM2510B |              |      |              |          |                  |      |
|--------------------|------------------|----------------------|--------------|------|--------------|----------|------------------|------|
| Seq Number:        | 3151442          | Matrix:              | Ground Water |      |              |          |                  |      |
| Parent Sample Id:  | 688601-001       | MD Sample Id:        | 688601-001 D |      |              |          |                  |      |
| Parameter          | Paren<br>Resu    | t MD<br>lt Result    |              | %RPD | RPD<br>Limit | Units    | Analysis<br>Date | Flag |
| Conductivity       | 5                | 578                  |              | 2    | 20           | umhos/cm | 02.22.2021 17:06 |      |

### Analytical Method: Specific Conductance @25C by SM2510B

| Seq Number:       | 3151442          | Matrix:       | Ground Water |              |                       |                  |      |
|-------------------|------------------|---------------|--------------|--------------|-----------------------|------------------|------|
| Parent Sample Id: | 688601-011       | MD Sample Id: | 688601-011 D |              |                       |                  |      |
| Parameter         | Parent<br>Result | MD<br>Result  | %RPD         | RPD<br>Limit | Units                 | Analysis<br>Date | Flag |
| Conductivity      | 561              | 561           | 0            | 20           | umhos/cm <sup>0</sup> | 2.22.2021 17:06  |      |

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference  $\begin{array}{l} [D] = 100*(C-A) \ / \ B \\ RPD = 200* \ | \ (C-E) \ / \ (C+E) \ | \\ [D] = 100*(C) \ / \ [B] \\ Log \ Diff. = Log(Sample \ Duplicate) \ - \ Log(Original \ Sample) \end{array}$ 

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

Page 41 of 50

Final 1.001

| Revised Date: 08/25/2020 Rev. 2020.2                     |                           | _                                                                                                                |                                                                                 |                                                                 |                                                                         |                                                                     |                                                                        |
|----------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------|
|                                                          |                           |                                                                                                                  | 6                                                                               |                                                                 |                                                                         | ¢                                                                   | 5                                                                      |
|                                                          |                           | 4                                                                                                                | * H0ħ( /                                                                        |                                                                 | المستعدية والمستعدية والمستعدية                                         | -1                                                                  | 3 /2/                                                                  |
|                                                          | -                         | 2                                                                                                                | i lelble                                                                        |                                                                 | rowan                                                                   | N                                                                   | 1                                                                      |
| ure) Date/Time                                           | Received by: (Signatu     | Relinquished by: (Signature)                                                                                     | Date/Time                                                                       | ¥°.                                                             | Received by: (Signatu                                                   | ignature)                                                           | Relinquished by: (S                                                    |
| *                                                        | SJOHRUSO,                 | zed. Inese terms will be enloyced timess previously re-                                                          | to Euromis Xenco, out not analyz                                                | s for each sample submitted                                     | to each project and a charge of S                                       | harge of \$85.00 will be applied                                    | of Eurofins Xenco. A minimum o                                         |
|                                                          |                           | ubcontractors. It assigns standard terms and condition<br>uch losses are due to circumstances beyond the contra- | penses incurred by the dient if su                                              | der from client company to I<br>onsibility for any losses or ex | es constitutes a valid purchase or<br>les and shail not assume any resp | nt and relinguishment of samp<br>a liable only for the cost of samp | Notice: Signature of this docume<br>of service. Eurofins Xenco will be |
|                                                          | с іў. (сл. і ст.          |                                                                                                                  |                                                                                 |                                                                 | ועבט וכרדי.                                                             | a Metal(s) to be alla                                               | Circle Method(s) and                                                   |
| 1 / 7470 / 7471                                          | Ho: 1631 / 245            | Co Cu Ph Mn Mn Ni Se An TI                                                                                       | Shi As Ra Re (d fr                                                              | DED GOTO · ARCRA                                                | מוזבוא דרו 4/1                                                          | - Motal(c) to he and                                                | Circle Methodic) and                                                   |
|                                                          | Ni K SA An Sin, Na S      | Ca Cr Co Cu Fe Ph Mo Mo Mo                                                                                       |                                                                                 |                                                                 | 00/0A 130                                                               | *VCU7 / & UUL                                                       | T-t-1 100 7 / 6010                                                     |
|                                                          |                           |                                                                                                                  | 3 1 1 1                                                                         | 2 1024                                                          | 2-17-21 17:17                                                           | Gw                                                                  | r soI-vd                                                               |
|                                                          |                           |                                                                                                                  | 3 / / /                                                                         | 19 6244                                                         | 2-17-21 14:08                                                           | GW                                                                  | PR-TBSI                                                                |
|                                                          |                           |                                                                                                                  | 2 / / /                                                                         | 300 6000                                                        | 2-17-21 12:10                                                           | 4/2 6W                                                              | PR-MOENW                                                               |
|                                                          |                           |                                                                                                                  |                                                                                 | 300 300                                                         | 2-17-2110:59                                                            | 11 GW                                                               | PR - MOENW                                                             |
|                                                          |                           |                                                                                                                  |                                                                                 | - Cree                                                          | 2-16-21 7:07                                                            | Ger                                                                 | PR-DKS3                                                                |
|                                                          |                           |                                                                                                                  |                                                                                 | 1 (22.45) 3                                                     | 2-16-21 14:31                                                           | Gur 1                                                               | PR-DX52                                                                |
|                                                          |                           |                                                                                                                  | 3 / / /                                                                         | 1 (599)                                                         | 2-16-21/2:15                                                            | GW                                                                  | 1 SX0- 34                                                              |
|                                                          |                           |                                                                                                                  |                                                                                 | WTN Ener S                                                      | 2-15-21 16:52                                                           | G-W                                                                 | CMUAN - Yd                                                             |
| 1.250ml HNDZ                                             |                           |                                                                                                                  |                                                                                 | ~ 300 842 (                                                     | 2-15-21 15:50                                                           | 11 GW                                                               | PR-SKRMAU                                                              |
| 2. 500m   CDO                                            |                           |                                                                                                                  |                                                                                 | 600 2000 3                                                      | 2-15-21 13:00                                                           | ew                                                                  | PR-000384                                                              |
| Sample Comments                                          |                           |                                                                                                                  | я<br>Сат<br>Алгі<br>Алгі<br>АІК                                                 | Depth Comp Co                                                   | Sampled Sampled                                                         | tion Matrix                                                         | Sample Identifica                                                      |
|                                                          |                           |                                                                                                                  | ( ( )<br>) ( )<br>) ( ) ( )<br>) ( ) ( )<br>) ( ) (                             | Grah/ #                                                         | Duto Titos                                                              |                                                                     |                                                                        |
| NaOH+Ascorbic Acid: SAPC                                 |                           |                                                                                                                  | 2                                                                               |                                                                 | Corrected Temperature:                                                  |                                                                     | Total Containers:                                                      |
| Zn Acetate+NaOH: Zn                                      |                           |                                                                                                                  | 200<br>Ca<br>27, K<br>254                                                       | -<br>S                                                          | emperature Reading:                                                     | Yes No RIA                                                          | Sample Custody Seals:                                                  |
| Na 25 20 3: NaSO 3                                       |                           |                                                                                                                  | .7)<br>,N:<br>Br, 1<br>                                                         | ס<br>ט                                                          | Correction Factor:                                                      | Yes NO NA                                                           | Cooler Custody Seals:                                                  |
| NaHSO 4: NABIS                                           |                           |                                                                                                                  | F, A<br>160                                                                     | 120                                                             | Thermometer (D:                                                         | TAN NO                                                              | Samples Received Intact:                                               |
| H <sub>3</sub> PO <sub>4</sub> ; HP                      |                           |                                                                                                                  | -2<br>, m<br>, log                                                              | Res No                                                          | Yes to Wet ke:                                                          | Temp Blank:                                                         | SAMPLE RECEIPT                                                         |
| H <sub>2</sub> S0 <sub>4</sub> ; H <sub>2</sub> NaOH: Na |                           |                                                                                                                  | 9,5<br>5,5<br>9#                                                                | eived by 4:30pm                                                 | the lab, if rec                                                         |                                                                     | PO #;                                                                  |
| HCL: HC HNO ;: HN                                        |                           |                                                                                                                  | 5 - 1<br>i, F1<br>Qy<br>904<br>.2 5                                             | day received by                                                 | UA. P.C. TAT starts the                                                 | unoral 2 STRANG                                                     | Sampler's Name: $R_A$                                                  |
| Cool: Cool MeOH: Me                                      |                           |                                                                                                                  | Agy/<br>(/<br>:c-s/                                                             |                                                                 | アッ Due Date:                                                            | residio ( journ                                                     | Project Location:                                                      |
| None: NO DI Water: H <sub>2</sub> O                      |                           |                                                                                                                  | 1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1 | Rush Pre                                                        | <b>X</b> Routine                                                        |                                                                     | Project Number:                                                        |
| Preservative Codes                                       |                           | ANALYSIS REQUEST                                                                                                 | )<br>)<br>100                                                                   | Around                                                          | k Pant Turn                                                             | lamits CREE                                                         | Project Name:                                                          |
| aPT [] Other:                                            | les: EDD ADa              | STIGK, COM                                                                                                       | STRAUG CORPOR                                                                   | Reymond C                                                       | Email:                                                                  | 27705551                                                            | Phone: 42                                                              |
| PST/UST TRRP Level IV                                    | j; Level li 🔲 Level iii 🗎 | Reporting                                                                                                        |                                                                                 | City, State ZIP:                                                | 79782                                                                   | TANTON TX                                                           | City, State ZIP: S                                                     |
|                                                          | roject:                   | State of P                                                                                                       |                                                                                 | Address:                                                        |                                                                         | B.Box 192                                                           | Address: $P$                                                           |
| ownfields 🔲 RRC 🔲 Superfund                              | UST/PST PRP Bro           | Program:                                                                                                         |                                                                                 | Company Name:                                                   | PORATION                                                                | STRAYS COR                                                          | Company Name:                                                          |
| omments                                                  | Work Order C              |                                                                                                                  |                                                                                 | Bill to: (if different)                                         | TRANG JR. P.G:                                                          | Armond LS                                                           | Project Manager:                                                       |
| Page f of                                                | www.xenco.com             |                                                                                                                  |                                                                                 |                                                                 |                                                                         |                                                                     |                                                                        |
| ۔<br>د                                                   |                           | 1975) 988-3199                                                                                                   | (575) 392-7550, Carlsbad, NM                                                    | te Faso, 12<br>Hobbs, NM                                        |                                                                         |                                                                     |                                                                        |
|                                                          |                           | (A) (Z (V) 307-3334<br>(A) (Z (V) 307-3334                                                                       | 132) 704-3440, 300 ALIANDAL                                                     | el Dava TV                                                      |                                                                         | Xenro                                                               |                                                                        |
| 100223                                                   | Work Order No:            | (274) 902-0300<br>ru mana ang ang a                                                                              | K (281) 240-4200, Dallas, IX (                                                  | Houston, E                                                      | nent Testina                                                            | no Environn                                                         |                                                                        |
| )<br>)<br>-                                              |                           | July                                                                                                             |                                                                                 |                                                                 |                                                                         | 50                                                                  | Pirofi                                                                 |

Chain of Custody

| Revised Date: 08/25/2020 Rev. 2020.2 |                                   |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                                       | -                                     | Ų                           |
|--------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|-----------------------------|
|                                      |                                   |                                                                                                  | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                       |                                       |                             |
|                                      |                                   |                                                                                                  | + HQHL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (                                     |                                       | ł                                     | A                           |
|                                      |                                   |                                                                                                  | 1 <del>2</del> 0/ <del>2</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                     | MAMO                                  |                                       | tr'                         |
| ) Date/Time                          | Received by. (Signature)          | inquished by: (Signature)                                                                        | Date/Time Rel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ure)                                  | Received by: (Signat                  | ov: (Signature) /                     | Relinguished t              |
|                                      | jotlated.                         | ese terms will be enforced unless previously neg                                                 | > Eurofins Xenco, but not analyzed. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$5 for each sample submitted t       | to each project and a charge of       | mum charge of \$85.00 will be applied | of Eurofins Xenco. A mini   |
|                                      | 15<br>15                          | actors. It assigns standard terms and condition<br>as are due to circumstances beyond the contro | irofins Xenco, its affiliates and subconti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | order from client company to Eu       | les constitutes a valid purchase      | ocument and relinquishment of samp    | Notice: Signature of this d |
| / 7470 / 7471                        | Hg: 1631 / 245.1 /                | Cu Pb Mn Mo Ni Se Ag TI L                                                                        | Sb As Ba Be Cd Cr Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SPLP 6010 : 8RCRA                     | lyzed TCLP                            | ) and Metal(s) to be ana              | Circle Method(s             |
| TI Sn U V Zn                         | Ni K Se Ag SiO <sub>2</sub> Na Sr | r Co Cu Fe Pb Mg Mn Mo                                                                           | b As Ba Be B Cd Ca C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PM Texas 11 AI S                      | 8RCRA 13                              | 010 200.8 / 6020:                     | Total 200.7 / 60            |
|                                      |                                   |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                                       |                                       |                             |
|                                      |                                   |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                                       |                                       |                             |
|                                      |                                   |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                                       |                                       |                             |
|                                      |                                   |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                                       |                                       |                             |
|                                      |                                   |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                                       |                                       |                             |
|                                      |                                   |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | 0104 101 A                            | 1                                     |                             |
|                                      |                                   |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20 20 20                              | J-10-11/1/2                           |                                       | 1 1 - VI                    |
|                                      |                                   |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45 Frand 3                            | 3-18-31 - 7 - 8 - 6                   | h                                     |                             |
|                                      |                                   |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | uke Grad 3                            | 2-17-2 19:40                          | 14 V                                  | DR-00049                    |
| Sample Comments                      |                                   |                                                                                                  | Catio<br>Avian<br>TPS<br>AIK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Depth Grab/ # of<br>Comp Con          | Date Time<br>Sampled Sampled          | tification Matrix                     | Sample Iden                 |
| NaUH+ASCOIDIC ACID: SAPC             |                                   |                                                                                                  | - 30<br>ns -<br>Sm<br>5-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ċ                                     | Corrected Temperature:                |                                       | Total Containers:           |
| Zn Acetate+NaOH: Zn                  |                                   |                                                                                                  | 0.17<br>· Ca,<br>· Ca, · Ca,<br>· Ca,<br>· Ca,<br>· Ca,<br>· Ca,<br>· Ca,<br>· Ca, · Ca,<br>· Ca, | ,<br>v                                | Temperature Reading:                  | S: Yes No MA                          | Sample Custody Seal         |
| Va 2S 2O 3: NaSO 3                   |                                   |                                                                                                  | )(€<br>Na,.<br>,β;<br>,β;<br>,0.0<br>,γος                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O<br>Ú<br>Pau                         | Correction Factor:                    | Yes No VIA                            | Cooler Custody Seals        |
| JaHSO 4: NABIS                       |                                   |                                                                                                  | k, m<br>, F,<br>116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -<br>P<br>ame                         | Thermometer ID:                       | Art Ves No                            | Samples Received Int        |
| 13PO 4: HP                           | Ŧ                                 |                                                                                                  | 2, 8<br>9, 5<br>Na<br>0, 1<br>2 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | es No                                 | Yes No Wet Ice:                       | Temoßlank:                            | CAMPIE RECTIOT              |
| 1250 4: H 2 NaOH: Na                 |                                   |                                                                                                  | Аз.<br>; Fa<br>; Se<br>Рм<br>-9.0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e day received by<br>ceived by 4:30pm | 1 Ja, Z. 4. TAT starts the lab, if re | KeymonalSTRA                          | Sampler's Name:             |
| 2001: COOL MECH: ME                  | τ ř                               |                                                                                                  | 143;<br>147<br>250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | Due Date:                             | HESIDIO LOUR                          | Project Location:           |
| Ione: NO DI Water: H <sub>2</sub> O  |                                   |                                                                                                  | 4)<br>(H)<br>40<br>-5m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Rush Code                             | ARoutine                              | >                                     | Project Number:             |
| Preservative Codes                   |                                   | ANALYSIS REQUEST                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Around                                | Proj. Tur                             | Alamito Creek                         | Project Name:               |
| Other:                               | es; EDD ADaPT                     | v, com Deliverable                                                                               | CAUSCORPORATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Reymondes                             | Email                                 | 1255 OLL ESH                          | Phone:                      |
|                                      | Level II 🔲 Level III 🛄 PST        | Reporting:                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | City, State ZIP:                      | 19782                                 | STANTON, TX                           | City, State ZIP:            |
| ]<br>]<br>]                          | ject                              | State of Pro                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Address:                              |                                       | P.O. Cox M2                           | Address                     |
| fields RRC Superfund                 | UST/PST PRP Brown                 | Program:                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Company Name:                         | ATION S                               | STRANG LOLDOR                         | Company Name:               |
| ments                                | Work Order Com                    |                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bill to: (if different)               | TRANG JR. EU                          | Raymond L S                           | Project Manager:            |
| Page of of                           | www.xenco.com                     | 2005                                                                                             | 75) 592-7 550, Calistiau, Mini (375)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |                                       |                                       |                             |
| נ<br>ר                               |                                   | 94-1296                                                                                          | 15) 585-3443, Lubbock, TX (806) 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EL Paso, TX (9                        |                                       | 1 Xenco                               |                             |
|                                      | Work Order No:                    | ) 509-3334                                                                                       | 2) 704-5440, San Antonio, TX (210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Midland, TX (43                       | vent Testing                          | Environn                              |                             |
|                                      |                                   | 0050-20                                                                                          | 10111010000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Houston TX                            |                                       | fins                                  | nulu 🐾                      |

-

Chain of Custody



**STRAUB CORPORATION - Geoscience** 

P.O. Box 192, Stanton, Texas 79782 (432) 756-3489

is approximately three days. The District will be responsible for acquiring legal access from landowners to enter the properties for the field investigation and sampling.

### Water Quality:

Water quality can be utilized as a source indicator of groundwater systems. Utilizing an approved groundwater sample plan, the groundwater samples collected from the identified springs and wells will be analyzed for the following analytes:

| Wa                                       | ter Quality | / Analysis                      |
|------------------------------------------|-------------|---------------------------------|
| Analyte                                  | Units       | Analysis Method                 |
| Cations                                  |             |                                 |
| Calcium                                  | mg/l        | EPA Method E-200.7              |
| Sodium                                   | mg/l        | EPA Method E-200.7              |
| Potassium                                | mg/l        | EPA Method E-200.7              |
| Magnesium                                | mg/l        | EPA Method E-200.7              |
| Anions                                   |             |                                 |
| Chloride                                 | mg/l        | EPA Method E-300.0              |
| Bromide                                  | mg/l        | EPA Method E-300.0              |
| Fluoride                                 | mg/l        | EPA Method E-300.0              |
| Nitrate                                  | mg/l        | EPA Method E-300.0              |
| Sulfate                                  | mg/l        | EPA Method E-300.0              |
| and a second state was the               |             |                                 |
| Alkalinity                               | mg/l        | EPA Method E-310.1              |
| Bicarbonate (CaCO3)                      | mg/l        | EPA Method E-310.2              |
| Total Dissolved Solids                   | mg/l        | Method SM2540C / 160.1          |
| рН                                       |             | EPA Method 9040                 |
| Arsenic                                  | ug/l        | EPA Method E-200.8              |
| Silver                                   | ug/l        | EPA Method E-200.8              |
| Silica                                   | mg/l        | EPA Method E-200.7              |
| Iron                                     | mg/l        | EPA Method E-200.7              |
| Specific Conductivity                    | uS/cm       | SM2510B                         |
| 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | ·. ·        |                                 |
| Uranium                                  | ug/l        | EPA Method E-200.8              |
| oxygen-10/Deutenum Isotope               | 0/00        | Cavity hing-Down Spectroscopy - |

All water samples will be placed in laboratory provided sample ware appropriate for the specified analytical analysis. Each groundwater sample container will be individually labeled with a unique identification number and placed on ice in a laboratory-supplied sample cooler. A properly completed chain of custody will be provided with the samples to the laboratory

# IOS Number : **78222**

| Date/Time: | 02.1   | 9.2021             | Created by:       | Brianna Teel   | Р                                     | Please send report | to: John Builes  |        |                  |            |
|------------|--------|--------------------|-------------------|----------------|---------------------------------------|--------------------|------------------|--------|------------------|------------|
| Lab# From  | : Mid  | land               | Delivery Pri      | ority:         | A                                     | Address:           | 1211 W. Florid   | da Ave | 3                |            |
| Lab# To:   | Hou    | ston               | Air Bill No.      | : 772952975437 | 7 E                                   | E-Mail:            | john.builes@e    | urofin | set.com          |            |
| Comple Id  | Matuin | Client Concelle Li | Comple Collection | Madaad         | Matha d Marra                         | Lab Dua            |                  |        |                  | <i>a</i> : |
| Sample Id  | Matrix | Client Sample Id   | Sample Collection | Method         | Method Name                           | Lab Due            | HT Due           | РМ     | Analytes         | Sign       |
| 688601-001 | W      | PR-000384          | 02.15.2021 13:00  | E200.7         | Recoverable Metals per ICP by EPA 200 | 02.25.2021         | 08.14.2021       | JHB    | CA FE K MG NA SI |            |
| 688601-001 | W      | PR-000384          | 02.15.2021 13:00  | E200.8         | Recoverable Metals by EPA 200.8       | 02.25.2021         | 08.14.2021       | JHB    | AG AS U          |            |
| 688601-001 | W      | PR-000384          | 02.15.2021 13:00  | SM4500-Н       | pH by SM4500-H                        | 02.25.2021         | 02.15.2021 13:15 | JHB    |                  |            |
| 688601-001 | W      | PR-000384          | 02.15.2021 13:00  | SM2540C        | TDS by SM2540C                        | 02.25.2021         | 02.22.2021 13:00 | JHB    | TDS              |            |
| 688601-001 | W      | PR-000384          | 02.15.2021 13:00  | SM2320B        | Alkalinity by SM2320B                 | 02.25.2021         | 03.01.2021       | JHB    | ALKB             |            |
| 688601-001 | W      | PR-000384          | 02.15.2021 13:00  | SM2510B        | Specific Conductance @25C by SM2510   | 02.25.2021         | 02.22.2021 13:00 | JHB    |                  |            |
| 688601-002 | W      | PR-SKRMAW1         | 02.15.2021 15:50  | E200.8         | Recoverable Metals by EPA 200.8       | 02.25.2021         | 08.14.2021       | JHB    | AG AS U          |            |
| 688601-002 | W      | PR-SKRMAW1         | 02.15.2021 15:50  | E200.7         | Recoverable Metals per ICP by EPA 200 | 02.25.2021         | 08.14.2021       | JHB    | CA FE K MG NA SI |            |
| 688601-002 | W      | PR-SKRMAW1         | 02.15.2021 15:50  | SM4500-Н       | pH by SM4500-H                        | 02.25.2021         | 02.15.2021 13:15 | JHB    |                  |            |
| 688601-002 | W      | PR-SKRMAW1         | 02.15.2021 15:50  | SM2540C        | TDS by SM2540C                        | 02.25.2021         | 02.22.2021 13:00 | JHB    | TDS              |            |
| 688601-002 | W      | PR-SKRMAW1         | 02.15.2021 15:50  | SM2320B        | Alkalinity by SM2320B                 | 02.25.2021         | 03.01.2021       | JHB    | ALKB             |            |
| 688601-002 | W      | PR-SKRMAW1         | 02.15.2021 15:50  | SM2510B        | Specific Conductance @25C by SM2510   | 02.25.2021         | 02.22.2021 13:00 | JHB    |                  |            |
| 688601-003 | W      | PR-AVAW1           | 02.15.2021 16:52  | E200.7         | Recoverable Metals per ICP by EPA 200 | 02.25.2021         | 08.14.2021       | JHB    | CA FE K MG NA SI |            |
| 688601-003 | W      | PR-AVAW1           | 02.15.2021 16:52  | E200.8         | Recoverable Metals by EPA 200.8       | 02.25.2021         | 08.14.2021       | JHB    | AG AS U          |            |
| 688601-003 | W      | PR-AVAW1           | 02.15.2021 16:52  | SM4500-Н       | pH by SM4500-H                        | 02.25.2021         | 02.15.2021 13:15 | JHB    |                  |            |
| 688601-003 | W      | PR-AVAW1           | 02.15.2021 16:52  | SM2510B        | Specific Conductance @25C by SM2510   | 02.25.2021         | 02.22.2021 13:00 | JHB    |                  |            |
| 688601-003 | W      | PR-AVAW1           | 02.15.2021 16:52  | SM2320B        | Alkalinity by SM2320B                 | 02.25.2021         | 03.01.2021       | JHB    | ALKB             |            |
| 688601-003 | W      | PR-AVAW1           | 02.15.2021 16:52  | SM2540C        | TDS by SM2540C                        | 02.25.2021         | 02.22.2021 13:00 | JHB    | TDS              |            |
| 688601-004 | W      | PR-DXS1            | 02.16.2021 12:15  | E200.8         | Recoverable Metals by EPA 200.8       | 02.25.2021         | 08.14.2021       | JHB    | AG AS U          |            |
| 688601-004 | W      | PR-DXS1            | 02.16.2021 12:15  | E200.7         | Recoverable Metals per ICP by EPA 200 | 02.25.2021         | 08.14.2021       | JHB    | CA FE K MG NA SI |            |
| 688601-004 | W      | PR-DXS1            | 02.16.2021 12:15  | SM4500-Н       | pH by SM4500-H                        | 02.25.2021         | 02.15.2021 13:15 | JHB    |                  |            |
| 688601-004 | W      | PR-DXS1            | 02.16.2021 12:15  | SM2540C        | TDS by SM2540C                        | 02.25.2021         | 02.22.2021 13:00 | JHB    | TDS              |            |
| 688601-004 | W      | PR-DXS1            | 02.16.2021 12:15  | SM2320B        | Alkalinity by SM2320B                 | 02.25.2021         | 03.01.2021       | JHB    | ALKB             |            |
| 688601-004 | W      | PR-DXS1            | 02.16.2021 12:15  | SM2510B        | Specific Conductance @25C by SM2510   | 02.25.2021         | 02.22.2021 13:00 | JHB    |                  |            |
| 688601-005 | W      | PR-DXS2            | 02.16.2021 14:31  | E200.8         | Recoverable Metals by EPA 200.8       | 02.25.2021         | 08.14.2021       | JHB    | AG AS U          |            |

## $IOS \ Number: 78222$

| Date/Time: | 02.19  | 9.2021           | Created by:       | Brianna Teel   | I                                     | Please send report | o: John Builes   |        |                  |      |
|------------|--------|------------------|-------------------|----------------|---------------------------------------|--------------------|------------------|--------|------------------|------|
| Lab# From: | Mid    | land             | Delivery Pri      | ority:         | A                                     | Address:           | 1211 W. Florid   | la Ave | 2                |      |
| Lab# To:   | Hou    | ston             | Air Bill No.      | : 772952975437 | 7 I                                   | E-Mail:            | john.builes@e    | urofin | set.com          |      |
| Sample Id  | Matrix | Client Sample Id | Sample Collection | Method         | Method Name                           | Lab Due            | HT Due           | PM     | Analytes         | Sign |
| 688601-005 | W      | PR-DXS2          | 02.16.2021 14:31  | E200.7         | Recoverable Metals per ICP by EPA 200 | 0 02.25.2021       | 08.14.2021       | JHB    | CA FE K MG NA SI |      |
| 688601-005 | W      | PR-DXS2          | 02.16.2021 14:31  | SM2320B        | Alkalinity by SM2320B                 | 02.25.2021         | 03.01.2021       | JHB    | ALKB             |      |
| 688601-005 | W      | PR-DXS2          | 02.16.2021 14:31  | SM2540C        | TDS by SM2540C                        | 02.25.2021         | 02.22.2021 13:00 | JHB    | TDS              |      |
| 688601-005 | W      | PR-DXS2          | 02.16.2021 14:31  | SM4500-Н       | pH by SM4500-H                        | 02.25.2021         | 02.15.2021 13:15 | JHB    |                  |      |
| 688601-005 | W      | PR-DXS2          | 02.16.2021 14:31  | SM2510B        | Specific Conductance @25C by SM251    | 02.25.2021         | 02.22.2021 13:00 | JHB    |                  |      |
| 688601-006 | W      | PR-DXS3          | 02.16.2021 17:07  | E200.8         | Recoverable Metals by EPA 200.8       | 02.25.2021         | 08.14.2021       | JHB    | AG AS U          |      |
| 688601-006 | W      | PR-DXS3          | 02.16.2021 17:07  | E200.7         | Recoverable Metals per ICP by EPA 200 | 0 02.25.2021       | 08.14.2021       | JHB    | CA FE K MG NA SI |      |
| 688601-006 | W      | PR-DXS3          | 02.16.2021 17:07  | SM2510B        | Specific Conductance @25C by SM251    | 02.25.2021         | 02.22.2021 13:00 | JHB    |                  |      |
| 688601-006 | W      | PR-DXS3          | 02.16.2021 17:07  | SM2320B        | Alkalinity by SM2320B                 | 02.25.2021         | 03.01.2021       | JHB    | ALKB             |      |
| 688601-006 | W      | PR-DXS3          | 02.16.2021 17:07  | SM2540C        | TDS by SM2540C                        | 02.25.2021         | 02.22.2021 13:00 | JHB    | TDS              |      |
| 688601-006 | W      | PR-DXS3          | 02.16.2021 17:07  | SM4500-Н       | pH by SM4500-H                        | 02.25.2021         | 02.15.2021 13:15 | JHB    |                  |      |
| 688601-007 | W      | PR-M0FNWW1       | 02.17.2021 10:59  | E200.8         | Recoverable Metals by EPA 200.8       | 02.25.2021         | 08.14.2021       | JHB    | AG AS U          |      |
| 688601-007 | W      | PR-M0FNWW1       | 02.17.2021 10:59  | E200.7         | Recoverable Metals per ICP by EPA 200 | 0 02.25.2021       | 08.14.2021       | JHB    | CA FE K MG NA SI |      |
| 688601-007 | W      | PR-M0FNWW1       | 02.17.2021 10:59  | SM4500-Н       | pH by SM4500-H                        | 02.25.2021         | 02.15.2021 13:15 | JHB    |                  |      |
| 688601-007 | W      | PR-M0FNWW1       | 02.17.2021 10:59  | SM2540C        | TDS by SM2540C                        | 02.25.2021         | 02.22.2021 13:00 | JHB    | TDS              |      |
| 688601-007 | W      | PR-M0FNWW1       | 02.17.2021 10:59  | SM2320B        | Alkalinity by SM2320B                 | 02.25.2021         | 03.01.2021       | JHB    | ALKB             |      |
| 688601-007 | W      | PR-M0FNWW1       | 02.17.2021 10:59  | SM2510B        | Specific Conductance @25C by SM251    | 02.25.2021         | 02.22.2021 13:00 | JHB    |                  |      |
| 688601-008 | W      | PR-M0FNWW2       | 02.17.2021 12:10  | E200.8         | Recoverable Metals by EPA 200.8       | 02.25.2021         | 08.14.2021       | JHB    | AG AS U          |      |
| 688601-008 | W      | PR-M0FNWW2       | 02.17.2021 12:10  | E200.7         | Recoverable Metals per ICP by EPA 200 | 0 02.25.2021       | 08.14.2021       | JHB    | CA FE K MG NA SI |      |
| 688601-008 | W      | PR-M0FNWW2       | 02.17.2021 12:10  | SM4500-Н       | pH by SM4500-H                        | 02.25.2021         | 02.15.2021 13:15 | JHB    |                  |      |
| 688601-008 | W      | PR-M0FNWW2       | 02.17.2021 12:10  | SM2540C        | TDS by SM2540C                        | 02.25.2021         | 02.22.2021 13:00 | JHB    | TDS              |      |
| 688601-008 | W      | PR-M0FNWW2       | 02.17.2021 12:10  | SM2320B        | Alkalinity by SM2320B                 | 02.25.2021         | 03.01.2021       | JHB    | ALKB             |      |
| 688601-008 | W      | PR-M0FNWW2       | 02.17.2021 12:10  | SM2510B        | Specific Conductance @25C by SM251    | 02.25.2021         | 02.22.2021 13:00 | JHB    |                  |      |
| 688601-009 | W      | PR-IBS1          | 02.17.2021 14:08  | E200.8         | Recoverable Metals by EPA 200.8       | 02.25.2021         | 08.14.2021       | JHB    | AG AS U          |      |
| 688601-009 | W      | PR-IBS1          | 02.17.2021 14:08  | E200.7         | Recoverable Metals per ICP by EPA 200 | 0 02.25.2021       | 08.14.2021       | JHB    | CA FE K MG NA SI |      |

### Inter Office Shipment or Sample Comments:

Please check holding times as some samples will be breaking hold before due date

# IOS Number : **78222**

| Date/Time: | 02.1   | 9.2021           | Created by:       | Brianna Teel   | F                                     | Please send report | to: John Builes  |        |                  |      |
|------------|--------|------------------|-------------------|----------------|---------------------------------------|--------------------|------------------|--------|------------------|------|
| Lab# From: | Mid    | land             | Delivery Pri      | ority:         | A                                     | Address:           | 1211 W. Florid   | da Ave | 2                |      |
| Lab# To:   | Hou    | iston            | Air Bill No.      | : 772952975437 | 7 E                                   | E-Mail:            | john.builes@e    | urofin | set.com          |      |
| Sample Id  | Matrix | Client Sample Id | Sample Collection | Method         | Method Name                           | Lab Due            | HT Due           | РМ     | Analytes         | Sign |
| 688601-009 | W      | PR-IBS1          | 02.17.2021 14:08  | SM2510B        | Specific Conductance @25C by SM2510   | 02.25.2021         | 02.22.2021 13:00 | JHB    |                  |      |
| 688601-009 | W      | PR-IBS1          | 02.17.2021 14:08  | SM2320B        | Alkalinity by SM2320B                 | 02.25.2021         | 03.01.2021       | JHB    | ALKB             |      |
| 688601-009 | W      | PR-IBS1          | 02.17.2021 14:08  | SM2540C        | TDS by SM2540C                        | 02.25.2021         | 02.22.2021 13:00 | JHB    | TDS              |      |
| 688601-009 | W      | PR-IBS1          | 02.17.2021 14:08  | SM4500-Н       | pH by SM4500-H                        | 02.25.2021         | 02.15.2021 13:15 | JHB    |                  |      |
| 688601-010 | W      | PR-IBS2          | 02.17.2021 17:17  | E200.8         | Recoverable Metals by EPA 200.8       | 02.25.2021         | 08.14.2021       | JHB    | AG AS U          |      |
| 688601-010 | W      | PR-IBS2          | 02.17.2021 17:17  | E200.7         | Recoverable Metals per ICP by EPA 200 | 02.25.2021         | 08.14.2021       | JHB    | CA FE K MG NA SI |      |
| 688601-010 | W      | PR-IBS2          | 02.17.2021 17:17  | SM4500-Н       | pH by SM4500-H                        | 02.25.2021         | 02.15.2021 13:15 | JHB    |                  |      |
| 688601-010 | W      | PR-IBS2          | 02.17.2021 17:17  | SM2540C        | TDS by SM2540C                        | 02.25.2021         | 02.22.2021 13:00 | JHB    | TDS              |      |
| 688601-010 | W      | PR-IBS2          | 02.17.2021 17:17  | SM2320B        | Alkalinity by SM2320B                 | 02.25.2021         | 03.01.2021       | JHB    | ALKB             |      |
| 688601-010 | W      | PR-IBS2          | 02.17.2021 17:17  | SM2510B        | Specific Conductance @25C by SM2510   | 02.25.2021         | 02.22.2021 13:00 | JHB    |                  |      |
| 688601-011 | W      | PR-000492        | 02.17.2021 18:40  | E200.8         | Recoverable Metals by EPA 200.8       | 02.25.2021         | 08.14.2021       | JHB    | AG AS U          |      |
| 688601-011 | W      | PR-000492        | 02.17.2021 18:40  | E200.7         | Recoverable Metals per ICP by EPA 200 | 02.25.2021         | 08.14.2021       | JHB    | CA FE K MG NA SI |      |
| 688601-011 | W      | PR-000492        | 02.17.2021 18:40  | SM4500-H       | pH by SM4500-H                        | 02.25.2021         | 02.15.2021 13:15 | JHB    |                  |      |
| 688601-011 | W      | PR-000492        | 02.17.2021 18:40  | SM2540C        | TDS by SM2540C                        | 02.25.2021         | 02.22.2021 13:00 | JHB    | TDS              |      |
| 688601-011 | W      | PR-000492        | 02.17.2021 18:40  | SM2510B        | Specific Conductance @25C by SM2510   | 02.25.2021         | 02.22.2021 13:00 | JHB    |                  |      |
| 688601-011 | W      | PR-000492        | 02.17.2021 18:40  | SM2320B        | Alkalinity by SM2320B                 | 02.25.2021         | 03.01.2021       | JHB    | ALKB             |      |
| 688601-012 | W      | PR-DXW5          | 02.18.2021 15:05  | SM4500-H       | pH by SM4500-H                        | 02.25.2021         | 02.15.2021 13:15 | JHB    |                  |      |
| 688601-012 | W      | PR-DXW5          | 02.18.2021 15:05  | SM2540C        | TDS by SM2540C                        | 02.25.2021         | 02.22.2021 13:00 | JHB    | TDS              |      |
| 688601-012 | W      | PR-DXW5          | 02.18.2021 15:05  | E200.7         | Recoverable Metals per ICP by EPA 200 | 02.25.2021         | 08.14.2021       | JHB    | CA FE K MG NA SI |      |
| 688601-012 | W      | PR-DXW5          | 02.18.2021 15:05  | E200.8         | Recoverable Metals by EPA 200.8       | 02.25.2021         | 08.14.2021       | JHB    | AG AS U          |      |
| 688601-012 | W      | PR-DXW5          | 02.18.2021 15:05  | SM2320B        | Alkalinity by SM2320B                 | 02.25.2021         | 03.01.2021       | JHB    | ALKB             |      |
| 688601-012 | W      | PR-DXW5          | 02.18.2021 15:05  | SM2510B        | Specific Conductance @25C by SM2510   | 02.25.2021         | 02.22.2021 13:00 | JHB    |                  |      |
| 688601-013 | W      | PR-DXW1          | 02.18.2021 16:06  | E200.8         | Recoverable Metals by EPA 200.8       | 02.25.2021         | 08.14.2021       | JHB    | AG AS U          |      |
| 688601-013 | W      | PR-DXW1          | 02.18.2021 16:06  | E200.7         | Recoverable Metals per ICP by EPA 200 | 02.25.2021         | 08.14.2021       | JHB    | CA FE K MG NA SI |      |
| 688601-013 | W      | PR-DXW1          | 02.18.2021 16:06  | SM4500-H       | pH by SM4500-H                        | 02.25.2021         | 02.15.2021 13:15 | JHB    |                  |      |

### Inter Office Shipment or Sample Comments:

Relinquished By:

Received By:

Page 47 of 50

Final 1.001

## $IOS \ Number: 78222$

| Date/Time: | 02.19  | 9.2021           | Created by:       | Brianna Teel   |                                   | Please send report to | : John Builes   |        |          |      |
|------------|--------|------------------|-------------------|----------------|-----------------------------------|-----------------------|-----------------|--------|----------|------|
| Lab# From: | : Mid  | land             | Delivery Pri      | ority:         |                                   | Address:              | 1211 W. Florid  | la Ave | e        |      |
| Lab# To:   | Hou    | ston             | Air Bill No.      | : 772952975437 | 7                                 | E-Mail:               | john.builes@e   | urofin | set.com  |      |
| Sample Id  | Matrix | Client Sample Id | Sample Collection | Method         | Method Name                       | Lab Due               | HT Due          | РМ     | Analytes | Sign |
| 688601-013 | W      | PR-DXW1          | 02.18.2021 16:06  | SM2540C        | TDS by SM2540C                    | 02.25.2021            | 2.22.2021 13:00 | JHB    | TDS      |      |
| 688601-013 | W      | PR-DXW1          | 02.18.2021 16:06  | SM2320B        | Alkalinity by SM2320B             | 02.25.2021            | 03.01.2021      | JHB    | ALKB     |      |
| 688601-013 | W      | PR-DXW1          | 02.18.2021 16:06  | SM2510B        | Specific Conductance @25C by SM25 | 10 02.25.2021 0       | 2.22.2021 13:00 | JHB    |          |      |

### Inter Office Shipment or Sample Comments:

Date Relinquished:

Brianna Teel

02.19.2021

Date Received:

Junto

Jhyrom Edralin

02.20.2021

Cooler Temperature: 4.0



## **Eurofins Xenco, LLC**



### Inter Office Report- Sample Receipt Checklist

Sent To: Houston IOS #: 78222

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Temperature Measuring device used : HOU-272

| Sent By:     | Brianna Teel   | Date Sent:     | 02.19.2021 02.45 PM |
|--------------|----------------|----------------|---------------------|
| Received By: | Jhyrom Edralin | Date Received: | 02.20.2021 11.40 AM |

### Sample Receipt Checklist

Comments

| #1 *Temperature of cooler(s)?                             | 4   |
|-----------------------------------------------------------|-----|
| #2 *Shipping container in good condition?                 | Yes |
| #3 *Samples received with appropriate temperature?        | Yes |
| #4 *Custody Seals intact on shipping container/ cooler?   | Yes |
| #5 *Custody Seals Signed and dated for Containers/coolers | Yes |
| #6 *IOS present?                                          | Yes |
| #7 Any missing/extra samples?                             | No  |
| #8 IOS agrees with sample label(s)/matrix?                | Yes |
| #9 Sample matrix/ properties agree with IOS?              | Yes |
| #10 Samples in proper container/ bottle?                  | Yes |
| #11 Samples properly preserved?                           | Yes |
| #12 Sample container(s) intact?                           | Yes |
| #13 Sufficient sample amount for indicated test(s)?       | Yes |
| #14 All samples received within hold time?                | Yes |

#### \* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

#### NonConformance:

Please check holding times as some samples will be breaking hold before due date

**Corrective Action Taken:** 

Nonconformance Documentation

Contact:

Contacted by :

Date:

Checklist reviewed by:

Jugar Claub Jhyrom Edralin

Date: 02.20.2021

## **Eurofins Xenco, LLC** Prelogin/Nonconformance Report- Sample Log-In

**Client:** Straub Corporation Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 02.19.2021 02.04.00 PM Temperature Measuring device used : IR8 Work Order #: 688601 Comments Sample Receipt Checklist 2 #1 \*Temperature of cooler(s)? #2 \*Shipping container in good condition? Yes #3 \*Samples received on ice? Yes #4 \*Custody Seals intact on shipping container/ cooler? N/A #5 Custody Seals intact on sample bottles? N/A N/A #6\*Custody Seals Signed and dated? #7 \*Chain of Custody present? Yes #8 Any missing/extra samples? No #9 Chain of Custody signed when relinguished/ received? Yes #10 Chain of Custody agrees with sample labels/matrix? Yes #11 Container label(s) legible and intact? Yes #12 Samples in proper container/ bottle? Yes #13 Samples properly preserved? Yes #14 Sample container(s) intact? Yes #15 Sufficient sample amount for indicated test(s)? Yes #16 All samples received within hold time? Yes Samples 001-009 Nitrates have broken hold Yes Xenco Stafford #17 Subcontract of sample(s)? N/A #18 Water VOC samples have zero headspace?

### \* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst: JKR

PH Device/Lot#: 10BDH1991

Checklist completed by: Bulla Tal Brianna Teel

Date: 02.19.2021

Checklist reviewed by:

John Builes

Date: 02.25.2021





Presidio County Underground Water Conservation District Mamito Creek Project Study Area



